
MEAN CURVATURE FLOW

FRIEDERIKE DITTBERNER

Contents

1. Mean curvature flow 1
2. Homothetically shrinking solutions 6
2.1. Hypersurfaces 7
2.2. Curves 13
3. Convex hypersurfaces with pinched second fundamental form 15
4. Singularities 19
5. Typ-I singularities 23
5.1. Huisken’s monotonicity formula 26
5.2. Gaussian density 31
6. Typ-II singularities 32
7. Convex hypersurfaces 34
8. Hamilton’s Harnack Inequality 35
9. Noncollapsing 42
10. Convexity estimates 45
11. Cylindrical estimates 50
Appendix A. Hypersurfaces in Rn+1 50
Appendix B. Frobenius’ theorem 55
Appendix C. Sard’s theorem 55
Appendix D. Maximum principles 60
D.1. 2-tensors 60
References 65

1. Mean curvature flow

LetM0 ⊂ Rn+1 be a smooth n-dimensional hypersurface without boundary, given
by an immersion X0 : Mn → Rn+1, where Mn is an abstract smooth manifold. We
consider the family of embeddings X : Mn × [0, T )→ Rn+1 with

X(p, 0) = X0(p)

for all p ∈Mn and

∂tX(p, t) = H(p, t) = −H(p, t)ν(p, t) = ∆Mt
X(p, t) (MCF)

for all (p, t) ∈ Mn × [0, T ). We abbreviate Mt := X(Mn, t). In the following, we
will write ∆ := ∆Mt

and ∇ := ∇Mt . The parabolic ball with radius r > 0 and
center (x, t) ∈ Rn+1 × R is the product

P (x, t, r) := Br(x)× (t− r2, t] ⊂ Rn+1 × R .

Given a family of subsets {Mt}t∈I the spacetime track is the set

M :=
⋃
t∈I

Mt × {t} ⊂ Rn+1 × R .
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Likewise, given a subset M⊂ Rn+1 × R, the time t slice of M is

Mt = {x ∈ Rn+1 | (x, t) ∈M} .

Example 1.1 (Shrinking spheres and cylinders). (i) LetMt = Snr(t), then (MCF)

reduces to an ODE for the radius, namely

r′ = −n
r
.

The solution with r(0) = r0 is

r(t) =
√
r2
0 − 2nt ,

for t ∈ (−∞, r2
0/2n).

(ii) The shrinking cylinders Mt = Smr(t) × Rn−m with r(t) =
√
r2
0 − 2mt exist for

t ∈ (−∞, r2
0/2m).

(iii) For n = 1 the so-called grim reaper is given byMt = graph(ut), where u(x, t) =
t− log cosx with x ∈ (−π, π).

Remark 1.2 (Normal motion and tangential diffeomorphisms). See [Eck04, Re-
mark 2.2(3)]. We will often consider smoothly embedded hypersurfaces Mt satisfy-
ing

(∂tx)
⊥

= 〈∂tx,ν(x)〉ν(x) = H(x)

for x ∈ Mt, where ⊥ denotes the projection onto the normal space of Mt. This
equation is equivalent to (MCF) up to diffeomorphisms tangent to Mt. Indeed, let

X̃( · , t) : Mn → Rn+1 with Mt = X̃(Mn, t) be a family of embeddings satisfying
the equation (

∂tX̃(q, t)
)⊥

= H̃(q, t) := H
(
X̃(q, t)

)
for q ∈ Mn, where ⊥ denotes the projection onto the normal space of X̃(Mn, t).
Let φt = ψ( · , t) be a family of diffeomorphisms of Mn satisfying

∇X̃(φ(p, t), t)∂tφ(p, t) = −
(
∂tX̃(φ(p, t), t)

)>
,

where > denotes projection onto the tangent space of X̃(Mn, t). The local existence

of such a family is guaranteed by the assumptions on X̃. If we set

X(p, t) = X̃(φ(p, t), t)

then Mt = X(Mn, t) = X̃(Mn, t), and

∂tX(p, t) = ∂tX̃(p, t) +∇X̃(φ(p, t), t)∂tφ(p, t) =
(
∂tX̃(q, t)

)⊥
= H(X(p, t)) .

The previous remark results in the following theorem, see [Sch17a, Theorem 10.6].

Theorem 1.3. Let X : Mn × [0, T ) → Rn+1 be a solution to (MCF), that is
〈∂tX,ν〉 = −H. Let R ∈ O(n+1) be an orthonormal map and φ : Mn×[0, T )→Mn

smooth. so that φ( · , t) is a diffeomorphism. Then X̃(p, t) := RX(φ(p, t), t) evolves
by 〈

∂tX̃(p, t), ν̃(p, t)
〉

= −H̃(p, t) ,

where H̃(p, t) = H(φ(p, t), t) for all p ∈Mn and t ∈ [0, T ).
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Lemma 1.4 (Evolution equations). Let (Mt)t∈[0,T ) evolve by (MCF). Then,

∂tgij = −2Hhij ,

∂tg
ij = 2Hhij ,

∂tdµ
n
t = −H2 dµnt ,

∂tν = ∇H ,

∂thij = ∇i∇jH −Hhki hjk
= ∆hij − 2Hhki hjk + |A|2hij ,

∂th
i
j = ∆hij + |A|2hij ,

∂tH = ∆H +H|A|2 ,
∂t|A|2 = ∆|A|2 − |∇A|2 + 2|A|4 ,

∂t|∇mA|2 ≤ ∆|∇mA|2 − 2|∇m+1A|2

+ C(m,n)
∑

i+j+k=m

|∇mA| · |∇iA| · |∇jA| · |∇kA|

for all t ∈ [0, T ).

Proof. See e. g. [Sch18, Section 3]. �

Corollary 1.5. We have that

∂tµ
n
t (Mt) = −

ˆ
Mt

H2dµnt .

Moreover, (MCF) is the negative L2 gradient flow for the surface area functional.

Proof. For arbitrary normal speeds ∂tX = −Fν, we have that ∂tgij = −2Fhij and

d

dt

ˆ
Mt

dµnt = −
ˆ
Mt

FHdµnt ≥ −
(ˆ

Mt

F 2dµnt

)1/2(ˆ
Mt

H2dµnt

)1/2

with equality if and only if F = H. �

Theorem 1.6 (Short time existence). Let M0 ⊂ Rn+1 be a smooth, compact hy-
persurface given by an immersion X0 : Mn → Rn+1, there exists a unique, smooth
solution of (MCF) in some positive time interval.

Proof. See e.g. [Man11, Section 1.5]. �

Remark 1.7. See [Man11, Remark 1.5.4]. To proof existence and uniqueness for
noncompact initial surfaces one needs estimates on the initial hypersurface (like
similarly, on the initial datum in order to deal with the heat equation in all Rn)
to have existence in some positive interval of time. One possibility is to assume a
uniform control on the norm of the second fundamental form of the initial hyper-
surface. Ecker and Huisken [EH89] showed that a uniform local Lipschitz condition
on a hypersurface is sufficient to guarantee short time existence.

Theorem 1.8 (Comparison principle). Let X : Mn × [0, T ) → Rn+1 and Y :
Nn × [0, T ) → Rn+1 be two hypersurfaces moving by MCF, where Mn is compact.
Then the distance between them is nondecreasing in time.

Proof. We follow the lines of [Man11, Theorem 2.2.1]. The distance between the
two hypersurfaces Mt = X(Mn, t) and Nt = Y (Nn, t) at time t, is given by

d(t) := inf
p∈Mn,q∈Nn

|X(p, t)− Y (q, t)| .

This function is locally Lipschitz in time, as the curvature is locally bounded and
the two hypersurfaces move by mean curvature. Hence it is differentiable almost
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everywhere. Assume that t is a differentiability point. Since Mn is compact, d
is actually a minimum. Suppose that d(t) > 0 and let (pt, qt) ∈ Mn × Nn be
points, where d(t) is attained. Differentiating |X(p, t) − Y (q, t)| with respect to
v = v1 ⊕ v2 ∈ TX(p,t)Mt

⊕
TY (q,t)Nt yields that

0 =

〈
X(pt, t)− Y (qt, t)

d(t)
,∇v1X(pt, t)−∇v2Y (qt, t)

〉
,

so that TX(pt,t)Mt and TY (qt,t)Nt have to be parallel. Hence, we can writeMt andNt
locally aroundX(pt, t) and Y (qt, t) as graphs of two functions f, h : U×(t−ε, t+ε)→
R, where U ⊂ Rn. After rotation, we can assume that span(e1, . . . , en) ⊂ Rn+1 is
such a tangent space with

X(pt, t) = (0, f(0, t)) , Y (qt, t) = (0, h(0, t)) and f(0, t) > h(0, t) .

We calculate

∂tf = −HM 〈νM , en+1〉 = ∆f − DijfD
ifDjf

1 + |Df |2

and

∂th = −HN 〈νN , en+1〉 = ∆h− DijhD
ihDjh

1 + |Dh|2
.

The function f − h has a spatial minimum at x = 0 at time t. Hence,

∆f(0, t)−∆h(0, t) ≥ 0 and Df(0, t) = Dh(0, t) = 0

and so

−〈HM (pt, t)νM (pt, t)−HN (qt, t)νN (qt, t), en+1〉 = ∆f(0, t)−∆h(0, t) ≥ 0 .

Since
X(pt, t)− Y (qt, t)

d(t)
= en+1

we obtain at (pt, qt) that

∂t|X(p, t)− Y (q, t)|

= −
〈
X(pt, t)− Y (qt, t)

d(t)
, HM (pt, t)νM (pt, t)−HN (qt, t)νN (qt, t)

〉
= −〈en+1, HM (pt, t)νM (pt, t)−HN (qt, t)νN (qt, t)〉 ≥ 0 .

This holds for every minimum so that ∂td ≥ 0. �

Proposition 1.9 (Preservation of embeddedness). If M0 is compact and embedded,
then Mt is embedded for all t ∈ (0, T ).

In particular, let

m(t) := max
(p,s)∈Mn×[0,t]

|A(p, s)|

and

l(p, q, t) :=

ˆ q

p

|γ̇(s)|g(t)ds for a minimizing geodesic γ

and

Ωε(t) :=
{

(p, q) ∈Mn ×Mn
∣∣m(t)l(p, q, t) ≤ ε

}
for ε > 0. Then there exists ε > 0 so that Mt is embedded on Ωε(t) and

d(t) := min
(p,q)∈(Mn×Mn)\Ωε(t)

d(p, q, t) ≥ min

{
d(0),

sin(ε)

m(t)

}
.
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Proof. We follow similar lines to [Man11, Proposition 2.2.7]. If the hypersurface
M0 is embedded, then Mt is embedded for a small positive time, otherwise there
is a sequence (pi, qi, ti)i∈N with X(pi, ti) = X(qi, ti) and ti → 0. We have for a
subsequence, that pi → p and qi → q. If p 6= q then X(p, 0) = X(q, 0), which is a
contradiction. If p = q, by the smooth existence of the flow, there exists an open
neighbourhood U ⊂ Mn of p so that the map X(·, t)|U is one-to-one for t ∈ [0, ε),
which is in contradiction. Define the monotone nondecreasing function

m(t) := max
(p,s)∈Mn×[0,t]

|A(p, s)|

and we choose a smooth, monotone nondecreasing function m∗ : [0, T ) → R+ such
that

m(t) ≤ m∗(t) ≤ 2m(t)

for every t ∈ [0, T ). Furthermore, define the geodesic intrinsic distance in the
Riemannian manifold (Mn, g(t))

l(p, q, t) :=

ˆ q

p

|γ̇(s)|g(t)ds for a minimizing geodesic γ

and the extrinsic distances

d(p, q, t) := |X(p, t)−X(q, t)| .

Consider the following inscribed and outscribed balls

Bin(p, t) := B1/m∗(t)

(
X(p, t)− ν(p, t)

m∗(t)

)
and

Bout(p, t) := B1/m∗(t)

(
X(p, t) +

ν(p, t)

m∗(t)

)
and the geodesic neighbourhood

Uε(p, t) := {q ∈Mn |m∗(t)l(p, q, t) ≤ ε} .

Then there exists ε ∈ (0, π/2) so that

X(Uε(p, t), t) ∩Bin(p, t) = X(Uε(p, t), t) ∩Bout(p, t) = ∅

Consider the open set

Ωε(t) :=
{

(p, q) ∈Mn ×Mn
∣∣m∗(t)l(p, q, t) ≤ ε}

and the closed set

S(t) :=
{

(p, q) ∈Mn ×Mn
∣∣ p 6= q and X(p, t) = X(q, t)

}
.

For embedded Mt,

Ωε(t) ∩ S(t) = ∅
and

d∂Ωε(t) := min
(p,q)∈∂Ωε(t)

d(p, q, t) ≥ 2 sin(ε)

m∗(t)
.

Assume that t0 ∈ (0, T ) is the first time where the flow is no more embedded. Since
Ω ∩ S = ∅ and ∂Ωε(t0) is compact,

min
t∈[0,t0]

d∂Ωε(t) =
2 sin(ε)

m∗(t0)
≥ sin(ε)

m∗(t)
=: c > 0 .

Furthermore, set

d(t) := min
(p,q)∈(Mn×Mn)\Ωε(t)

d(p, q, t) .

Assume that there exists a time t1 ∈ (0, t0) so that d(t1) < min{d(0), c} for the
first time. Then d(t1) is attained at points (p1, q1) ∈ (Mn ×Mn) \Ω. A geometric
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argument analogous to the one of the comparison principle, Theorem 1.8, shows
that ∂td(t) ≥ 0. Hence

d(t) ≥ min{d(0), c} > 0

on [0, t0], which is a contradiction. �

Theorem 1.10 (Huisken, [Hui84, Corollary 3.6(ii)]). Let (Mt)t∈[0,T ) be a family
of closed hypersurfaces moving by (MCF). Assume M0 = X0(M) closed and mean
convex, i.e. H ≥ 0. Then H > 0 for all t ∈ (0, T ).

Proof. See [Sch17d, Theorem 2.1.2]. That H ≥ 0 for t ≥ 0 follows from the evolution
equation of H and the parabolic maximum principle, Theorem D.3. Assume that
H(p0, t0) = 0 for some t0 > 0. The strong maximum principle then implies that
H = 0 for all (p, t) and 0 ≤ t ≤ t0. But this is impossible since any closed
hypersurface in Rn+1 has points where λ1 > 0. �

2. Homothetically shrinking solutions

Definition 2.1 (Homothetically shrinking solutions, Brakke [Bra78, Appendix C]).
Let λ : [t0, T ] → R+ be smooth and decreasing, λ(t0) = 1 and λ(T ) = 0. Let
x0 ∈ Rn+1. A homothetically shrinking solution X : Mn× [t0, T )→ Rn+1 to (MCF)
satisfies

Mt = λ(t)(M0 − x0) + x0

for all t ∈ [t0, T ). This describes solutions of (MCF) which move by scaling about
x0.

Remark 2.2. See [Eck04, Examples 2.3(4)]. We can make the separation of vari-
ables ansatz

X̃(q, t) = λ(t)X̃(q, t0)

for a family of embeddings X̃ : Mn× [t0, T )→ Rn+1 with Mt = X̃(Mn, t) satisfying
the evolution equation(

∂tX̃(q, t)
)⊥

=
〈
∂tX̃(q, t),ν(q, t)

〉
= H̃(q, t)

for q ∈ Mn. In Remark 1.2, we saw that there are tangential diffeomorphisms
φt : Mn →Mn, t ∈ [t0, T ), with

X̃(q, t) = X
(
φ−1
t (q), t

)
for q ∈ Mn, where the embeddings X( · , t) : Mn → Rn+1 satisfy (MCF). This
says that, up to tangential diffeomorphisms, the radial or homothetic motion of the
hypersurfaces Mt (described by X̃) is equivalent to their normal motion along the
mean curvature vector (described by X). For the shrinking sphere solution these
two agree, but for the shrinking cylinder they differ. Since the mean curvature of
the embeddings scales with factor 1/λ(t) we deduce

∂tλ(t)
(
X̃(q, t0)

)⊥
=
(
∂tX̃(q, t)

)⊥
= H̃(q, t) =

1

λ(t)
H̃(q, t0)

for q ∈Mn. From this we infer that

α ≡ 2λ(t)∂tλ(t) = ∂tλ
2(t)

is independent of t. We therefore obtain under the assumption λ(t0) = 1 that

λ(t) =
√

1 + α(t− t0)

for all t satisfying t > t0 − 1/α. Hence

H(p, t) = α
〈X(p, t),ν(p, t)〉

2λ2(t)
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for (p, t) ∈Mn×(−∞, T ), where T = t0−1/α. This describes expanding homothetic
solutions about 0 for α > 0 and contracting homothetic solutions about 0 for α < 0.
Let us concentrate on α < 0. If we set λ(T ) = 0 for T > t0, which requires the
hypersurface to disappear at time T , then α = −1/(T − t0) and thus

λ(t) =

√
T − t
T − t0

and

H(p, t) =
〈X(p, t),ν(p, t)〉

2(T − t)
for (p, t) ∈Mn × (−∞, T ).

Lemma 2.3. Let (Mt)t∈(−∞,0) be an ancient solution of MCF. Then

H(x) =
〈x,ν(x)〉
−2t

for all x ∈Mt and t < 0 if and only if Mt =
√
−tM−1 for all t < 0.

Proof. Let Mt =
√
−tM−1 for all t < 0. Then H(x) = 〈x,ν(x)〉/(−2t) for all

x ∈Mt and t < 0 follows by Remark 2.2.
On the other hand, let H(x) = 〈x,ν(x)〉/(−2t) for all x ∈Mt and t < 0. Then

〈∆Mt
X(p, t),ν(p, t)〉 = −H(p, t) = −〈X(p, t),ν(p, t)〉

−2t

and thus up to tangential motion X(p, t) =
√
−2tX(p, t0〉. �

2.1. Hypersurfaces.

Theorem 2.4 (Huisken, [Hui90, Theorem 4.1] and [Hui93]). Let M ⊂ Rn+1 be a
smooth, complete, embedded, mean convex hypersurface such that H(x) = 〈x,ν〉/2
at every x ∈ M and there exists a constant C > 0 such that |A| + |∇A| ≤ C and
µn(M ∩BR) ≤ CeR, for every ball of radius R > 0 in Rn+1. Then, up to a rotation
in Rn+1, M is of the form Sm√

2m
× Rn−m for m = 0, 1, . . . , n.

Proof. See [Man11, Proposition 3.4.1]. We scale M by the factor 1/2 so that H(x) =
〈x,ν(x)〉 at every x ∈ M . By covariant differentiation of the equation H = 〈x,ν〉
in an orthonormal frame {τ 1, . . . , τn} on M we get by the Weingarten equations

∇iν = ∂iν = hji∂jx that

∇jH = 〈x,∇jν〉 = 〈x, ∂kx〉hkj
and by the Gauss equations ∇i∇jx = −hijν and Codazzi equations ∇khij =
∇khji = ∇jhik at one fixed point where the Christoffel symbols vanish, that

∇i∇jH = gikh
k
j + 〈x,∇i∇kx〉hkj + 〈x, ∂kK〉∇ihkj

= hij + 〈x,ν〉hikhkj + 〈x, ∂kx〉gkl∇ihjl
= hij −Hhikhkj + 〈x, ∂kx〉gkl∇lhij
= hij −Hhikhkj + 〈x,∇hij〉 . (2.1)

Contracting with gij we have

∆H = H
(
1− |A|2

)
+ 〈x,∇H〉 . (2.2)

From equation (2.2) and the strong maximum principle for elliptic equations, The-
orem D.1, we see that, since M satisfies H ≥ 0 by assumption and

∆H ≤ H + 〈x,∇H〉
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we must either have that H = 0 or H > 0 on all M . Contracting (2.1) with hij , we
have

hij∇i∇jH = |A|2 −H tr
(
A3
)

+
〈x,∇|A|2〉

2
,

which implies, by Simons’ identity (A.1),

∆hij = ∇i∇jH +Hhikh
k
j − |A|2hij

that

∆|A|2 = ∆(hijhij) = hij∆hij + 2gmn∇mhij∇nhij + hij∆h
ij

= hij∆hij + 2gmngkiglj∇mhkl∇nhij + hijg
kigjl∆hkl

= 2hij
(
∇i∇jH +Hhikh

k
j − |A|2hij

)
+ 2gmn∇mhil∇nhli

= 2|A|2 − 2H tr
(
A3
)

+ 〈x,∇|A|2〉+ 2H tr
(
A3
)
− 2|A|4 + 2|∇A|2

= 2|A|2(1− |A|2) + 〈x,∇|A|2〉+ 2|∇A|2 .

Assume that H = 0. As M is complete and x is a tangent vectorfield on M by
the equation 〈x,ν〉 = 0, for every point x ∈ M there is a unique solution of the
ODE

γ′(s) = x(γ(s)) = γ(s)

passing through x and contained in M for every s ∈ R, but such solution is simply
the line in Rn+1 passing through x and the origin. Thus, M has to be a cone and
being smooth the only possibility is a hyperplane through the origin of Rn+1.

Assume that H > 0 everywhere (so dividing by H and |A| is allowed). For R > 0,
define

ηR = ν∂(M∩BR(0))

to be the outward unit conormal to M ∩ BR(0) along ∂(M ∩ BR(0)), which is a
smooth boundary for almost every R > 0 (by Sard’s theorem, see homework or
Corollary C.3). Then, supposing that R belongs to the set R ⊂ R+ of the regular
values of the function | · | restricted to M ⊂ Rn+1, from equation (2.2) and the
divergence theorem, Theorem A.2, we compute

εR =

ˆ
∂(M∩BR(0))

|A|〈∇H, ηR〉 exp

(
−R

2

2

)
dµn−1

=

ˆ
M∩BR(0)

|A|∆H exp

(
−|x|

2

2

)
+

〈
∇
(
|A| exp

(
−|x|

2

2

))
,∇H

〉
dµn

=

ˆ
M∩BR(0)

(
|A|H

(
1− |A|2

)
+ |A|〈x,∇H〉

)
exp

(
−|x|

2

2

)
dµn

+

ˆ
M∩BR(0)

(
1

2|A|
〈∇|A|2,∇H〉 − |A|〈x,∇H〉

)
exp

(
−|x|

2

2

)
dµn

=

ˆ
M∩BR(0)

(
|A|H

(
1− |A|2

)
+

1

2|A|
〈∇|A|2,∇H〉

)
exp

(
−|x|

2

2

)
dµn
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and similarly

δR =

ˆ
∂(M∩BR(0))

H

|A|
〈∇|A|2, ηR〉 exp

(
−R

2

2

)
dµn−1

=

ˆ
M∩BR(0)

H

|A|
∆|A|2 exp

(
−|x|

2

2

)
+

〈
∇
(
H

|A|
exp

(
−|x|

2

2

))
,∇|A|2

〉
dµn

=

ˆ
M∩BR(0)

(
2|A|H

(
1− |A|2

)
+

2H|∇A|2

|A|

+
H

|A|
〈x,∇|A|2〉

)
exp

(
−|x|

2

2

)
dµn

+

ˆ
M∩BR(0)

(
〈∇H,∇|A|2〉

|A|
− H|∇|A|2|2

2|A|3
− H

|A|
〈x,∇|A|2〉

)
exp

(
−|x|

2

2

)
dµn

=

ˆ
M∩BR(0)

(
2|A|H

(
1− |A|2

)
+

2H|∇A|2

|A|
+
〈∇H,∇|A|2〉

|A|

−H|∇|A|
2|2

2|A|3

)
exp

(
−|x|

2

2

)
dµn .

Hence,

σR = 2δR − 4εR

=

ˆ
M∩BR(0)

(
4H|∇A|2

|A|
− H|∇|A|2|2

|A|3

)
exp

(
−|x|

2

2

)
dµn

=

ˆ
M∩BR(0)

(
4|A|2|∇A|2 −

∣∣∇|A|2∣∣2) H

|A|3
exp

(
−|x|

2

2

)
dµn .

As we have
4|A|2|∇A|2 ≥ |∇|A|2|2

the quantity σR is nonnegative and nondecreasing in R. If now we show that

lim inf
R→∞

σR = 0

we can conclude that, at every point of M ,

4|A|2|∇A|2 = |∇|A|2|2 . (2.3)

Getting back to the definitions of εR and δR, we have

|σR| =

∣∣∣∣∣−2

ˆ
∂(M∩BR(0))

H

|A|
〈∇|A|2, η〉 exp

(
−R

2

2

)
dµn−1

+4

ˆ
∂(M∩BR(0))

|A|〈∇H, η〉 exp

(
−R

2

2

)
dµn−1

∣∣∣∣∣
≤ 4 exp

(
−R

2

2

)ˆ
∂(M∩BR(0))

(
H

|A|
|∇|A|2|+ |A||∇H|

)
dµn−1

≤ 8 exp

(
−R

2

2

)ˆ
∂(M∩BR(0))

(H|∇A|+ |A||∇H|) dµn−1

≤ C exp

(
−R

2

2

)
µn−1(∂(M ∩BR(0))) ,

by the estimates on A and ∇A in the hypotheses. Assume that the lefthand side
does not go to zero. That is, suppose that for every R belonging to the set R ⊂ R+

(which is of full measure) and R larger than some R0 > 0 we have

µn−1(∂(M ∩BR(0))) ≥ δ exp

(
R2

2

)
≥ δR exp

(
R2

4

)
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for some constant δ > 0. Recall the area formula and divergence theorem, Theo-
rems A.1 and A.2. As the function

R 7→ µn(M ∩BR(0))

is monotone and continuous from the left and actually continuous at every value
R ∈ R, we can differentiate it almost everywhere in R+ and we have, for R0 < r <
R,

µn(M ∩BR(0))− µn(M ∩Br(0)) =

ˆ R

r

d

dξ
µn(M ∩Bξ(0)) dξ

=

ˆ R

r

ˆ
M∩Bξ(0)

divM∩Bξ(0) ηξ dµ
n−1 dξ

= −
ˆ R

r

ˆ
M∩Bξ(0)

〈ηξ,HM∩Bξ(0)〉 dµn−1 dξ

+

ˆ R

r

ˆ
∂(M∩Bξ(0))

〈ηξ, ηξ〉 dµn−1 dξ

=

ˆ R

r

ˆ
∂(M∩Bξ(0))

dµn−1 dξ

≥ δ
ˆ R

r

ξ exp

(
ξ2

4

)
dξ = 2δ

(
exp

(
R2

4

)
− exp

(
r2

4

))
.

Then
µn(M ∩BR(0))e−R →∞ ,

for R→∞, in contradiction with the hypotheses of the theorem. Hence, the

lim inf
R→∞,R∈R

exp

(
−R

2

2

)
µn−1(∂(M ∩BR(0))) = 0 .

It follows that the same holds for |σR| and equation (2.3) is proved. By Cauchy–
Schwarz,

4|A|2|∇A|2 = |∇|A|2|2 = 4|A∇A|2 ≤ 4|A|2|∇A|2

or in coordinates

4hijh
j
i∇kh

m
n ∇khnm = ∇k(hijh

j
i )∇

k(hmn h
n
m)

= 4hijh
m
n ∇kh

j
i∇

khnm ≤ 4hijh
j
i∇kh

m
n ∇khnm

with equality if and only if A and ∇A are linearly dependent, that is, at every point
there exist constants ck such that

∇khij = ckhij

for every i, j. Contracting this equation with the metric gij and with hij we get

∇kH = ckH and ∇k|A|2 = 2ck|A|2 ,
hence

∇k logH = ck and ∇k log |A|2 = 2ck .

This implies

∇k log

(
H

|A|

)
= 0 so that |A| = αH

for some constant α > 0. By connectedness this relation has to hold globally on M .
Suppose now that at a point |∇H| 6= 0, then

∇khij = ckhij =
∇kH
H

hij (2.4)

which is a symmetric 3-tensor by the Codazzi equations, hence

hij∇kH = hik∇jH
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at one point, where the Christoffel symbols vanish. Computing then in normal
coordinates with an orthonormal basis {τ 1, . . . , τn} such that τ 1 = ∇H/|∇H|, we
have with gij = δij ,

0 = |hij∇kH − hik∇jH|2

= (hij∇kH − hik∇jH)gilgjmgkn(hlm∇nH − hln∇mH)

= 2|∇H|2|A|2 − 2gilgjmgknhijhln∇kH∇mH

= 2|∇H|2|A|2 − 2gilhmi h
k
l∇kH∇mH

= 2|∇H|2|A|2 − 2gilh1
ih

1
l∇1H∇1H

= 2|∇H|2
(
|A|2 −

n∑
i=1

(
h1
i

)2)
.

Hence, |A|2 =
∑n
i=1

(
h1
i

)2
and

|A|2 =
(
h1

1

)2
+ 2

n∑
i=2

(
h1
i

)2
+

n∑
i,j 6=1

(
hji

)2

so hij = 0 unless i = j = 1, which means that A has rank one. Thus, we have two
possible (not mutually excluding) situations at every point of M , either A has rank
one or ∇H = 0.

If kerA ≡ ∅ on M , A must have rank at least two as we assumed n ≥ 2, then we
have ∇H = 0 which implies ∇A = 0 and

hij = Hhikh
k
j = Hhikg

klhlj

by equation (2.1). This means that for an eigenvalue λm with eigenvector ξm,

hijξ
j
m = Hhikg

klhljξ
j
m = Hhikg

klλmgljξ
j
m = λmHhijξ

j
m

so that all the eigenvalues of A are 0 or 1/H. As the kernel is empty

H =

n∑
i=1

λm =
n

H

so that
H =

√
n and hij =

gij√
n
.

Then, the complete hypersurface M has to be the sphere Sn√
n
, indeed we compute

∆|x|2 = ∆|x|2 = 2∇〈x,∇x〉 = 2n+ 2〈x,∆x〉
= 2n− 2H〈x,ν〉 = 2n− 2H2 = 0 ,

by means of the structural equation H = 〈x,ν〉. Hence, |x|2 is a harmonic function
on M . Looking at the point of M of minimum distance from the origin, by the
strong maximum principle for elliptic equations, Theorem D.1, it must be constant
on M and M = Sn√

n
.

Let now kerA(x) 6= ∅ at some point x ∈ M , with dim kerA(x) = (n −m) and
0 < m < n (as A is never zero), and let

v1(x), . . . , vn−m(x) ∈ TxM ⊂ Rn+1

be a family of unit orthonormal tangent vectors spanning kerA(x), that is,

hij(x)vjk(x) = 0

for k = 1, . . . , n−m. By (2.4), the geodesic γ(s) from x ∈M (M is complete) with
initial velocity ∂sγ(0) = vk(x) satisfies

∇∂sγ(hij∂sγ
j) =

〈∇H, ∂sγ〉
H

hij∂sγ
j
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hence, by Gronwall’s lemma there holds

hij(γ(s))∂sγ
j(s) = hij(γ(0))∂sγ

j(0) exp

(ˆ s

0

〈∇H, ∂σγ〉
H

dσ

)
= 0

for every s ∈ R. Since γ is a geodesic in M , ∂2
sγ(s) ∈ (Tγ(s)M)⊥, that is, the normal

to the curve in Rn+1 is also the normal to M , then letting κ be the curvature of γ
in Rn+1, we have

κ = −〈νM , ∂2
sγ〉 = hij∂sγ

i∂sγ
j = 0 ,

thus γ is a straight line in Rn+1 and

x+ kerA(x) ⊂M ,

where x+kerA(x) ⊂ Rn+1 is an (n−m)-dimensional affine subspace. Let now σ(s)
be a geodesic from x to another point y parametrized by arclength and extend by
parallel transport the vectors vk(x), k = 1, . . . , n−m, along σ, then

∇∂sσ(hijv
j
k) =

〈∇H, ∂sσ〉
H

hijv
j
k

and again by Gronwall’s lemma it follows that hij(γ(s))vjk(γ(s)) = 0 for every s ∈ R
and k = 1, . . . , n−m, in particular vk(y) ∈ kerA(y). Hence,

dim kerA ≡ n−m
on M with 0 < m < n (as A is never zero) and all the affine (n −m)-dimensional
subspaces x+ kerA(x) ⊂ Rn+1 are contained in M for every x ∈M , that is,

M + ker(M) ⊂M .

Moreover, as hijv
j
k = 0 along the geodesic σ, we have

DRn+1

∂sσ vk = ∇∂sσvk + 〈∇∂sσvk,νM 〉νM = −hijvjk∂sσ
iνM = 0 ,

so the extended vectors vk are constant in Rn+1, which means that the parallel
extension is independent of the geodesic σ, that the subspaces kerA(x) are all a
common (n−m)-dimensional vector subspace of Rn+1 and

M = M + kerA .

Let x ∈M . Then there exists y ∈M ∩ (kerA)⊥ and v ∈ kerA so that

x = y + v .

Define f : M → kerA by
f(x) = v .

By Sard’s theorem, Corollary C.3, there exists a vector v ∈ kerA such that

N(v) := f−1(v) = M ∩
(
v + (kerA)⊥

)
is a smooth, complete m-dimensional submanifold of Rn+1. Since M = M + kerA,
N(v) = N(w) for all v, w ∈ kerA and

M = N × kerA .

This implies that
L := N(0) = M ∩ (kerA)⊥

is a smooth, complete m-dimensional submanifold of (kerA)⊥ = Rm+1 with

M = L× kerA .

Moreover, as kerA is in the tangent space to every point of L, the normal νM to
M at a point of L stays in (kerA)⊥ so it must coincide with the normal νL to L
in (kerA)⊥, then a simple computation shows that the mean curvature HM of M
at the points of L is equal to the mean curvature HL of L as a hypersurface of
(kerA)⊥ = Rm+1. This shows that L is a hypersurface in Rm+1 satisfying HL(z) =
〈z,νL(z)〉 for every z ∈ L. Finally, as by construction the second fundamental
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form of L has empty kernel, by the previous discussion we have L = Sm√
m

and

M = Sm√
m
× Rn−m which proves the claim. �

Theorem 2.5 (Colding–Minicozzi, [CM12, Theorem 10.1]). If Mn, for n ≥ 2, is
an embedded hypersurface in Rn+1, with non-negative mean curvature, satisfying
H = 〈x,ν〉/2, then Mn is of the form Sm√

2m
× Rn−m for m = 0, 1, . . . , n.

2.2. Curves.

Theorem 2.6 (Abresch–Langer, [AL86]). Let Σ ⊂ R2 be a smooth, complete, em-
bedded curve satisfying κ(x) = 〈x,ν(x)〉/2 for every x ∈ Σ. Then Σ is either the
line through the origin or the S1√

2
.

Proof. See [Man11, Proposition 3.4.1]. We scale the curve by the factor 1/2 so
that κ = 〈x,ν〉 for every x ∈ Σ. Fixing a reference point on a curve Σ = X(I),
I ∈ {S1,R}, we have an arclength parameter s which gives a unit tangent vectorfield
τ = ∂sX and a unit normal vectorfield ν = (τ 2,−τ 1), which is the clockwise
rotation of π/2 in R2 of the vector τ . Then the curvature is given by

κ = −〈∂sτ ,ν〉 = 〈τ , ∂sν〉

so that

∂sν = κτ and ∂sτ = −κν .
The relation κ = 〈x,ν〉 implies the ODE for the curvature

∂sκ = 〈τ ,ν〉+ 〈x, ∂sν〉 = κ〈x, τ 〉 .

Suppose that at some point κ = 0, then also ∂sκ = 0 at the same point. Hence, by
the uniqueness theorem for ODE’s we conclude that κ is identically zero so that Σ
is a line. Since 〈x,ν〉 = 0 for every x ∈ Σ, we conclude that 0 ∈ Σ. So we suppose
that κ is always nonzero and possibly reversing the orientation of the curve, we
assume that κ > 0 at every point, that is, the curve is strictly convex. Computing
the derivative of |X|2,

∂s|X|2 = 2〈X, τ 〉 = 2
∂sκ

κ
= 2∂s log κ

we get

κ = C exp

(
|x|2

2

)
for some constant C > 0. Hence, κ is bounded from below by C > 0. Since Σ
is convex, we can consider the coordinate ϑ = arccos〈e1,ν〉. (Note that ϑ is only
locally continuous and jumps after a complete round). We have ∂sϑ = κ as well as

∂ϑκ =
∂sκ

κ
= 〈x, τ 〉 and ∂2

ϑκ =
∂s∂ϑκ

κ
=

1− κ〈x,ν〉
κ

=
1

κ
− κ . (2.5)

Multiplying both sides of the last equation by 2∂ϑκ we get

0 = 2∂ϑκ∂
2
ϑκ+ 2κ∂ϑκ−

2∂ϑκ

κ
= ∂ϑ

(
(∂ϑκ)2 + κ2 − log κ2

)
,

so that,

(∂ϑκ)2 + κ2 − log κ2 ≡ E ≥ 1

along all the curve. We have E = 1 if and only if κ2 ≡ 1 along the curve, which
is the unit circle centered at the origin of R2. When E > 1, it follows that κ is
uniformly bounded from above, hence recalling that κ = C exp(|x|2/2),

Σ ⊂ BR(0)

for some R > 0 and by the embeddedness and completeness hypotheses, Σ must be
closed, simple and strictly convex, as κ > 0 at every point.
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Suppose that Σ is not a line. We follow the lines of [GH86, Lemma 5.7.9]
and [Pih98, Lemma 7.23]. The system{

1,
√

2 cos(nϑ),
√

2 sin(nϑ)
}
n∈Z

(2.6)

forms an orthonormal basis of the periodic functions in the Hilbert space C2([0, 2π])
with respect to the L2-inner product (see e.g. [HL99, p. 124]). We have dst = dϑ/κ
so that ˆ

S1

sin(ϑ)

κ
dϑ =

ˆ
S1Rt

sin

(
s

Rt

)
dst = cos(2π)− cos(0) = 1− 1 = 0

and ˆ
S1

cos(ϑ)

κ
dϑ =

ˆ
S1Rt

cos

(
s

Rt

)
dst = sin(2π)− sin(0) = 0 .

Furthermore, integration by parts yields

0 =

ˆ
S1

sin(ϑ)

κ
dϑ

ˆ
S1

1

κ

∂ cos

∂ϑ
(ϑ) dϑ

= −
ˆ
S1

cos(ϑ)
∂

∂ϑ

(
1

κ

)
dϑ =

ˆ
S1

cos(ϑ)
1

κ2

∂κ

∂ϑ
dϑ

and

0 = −
ˆ
S1

cos(ϑ)

κ
dϑ =

ˆ
S1

1

κ

∂ sin

∂ϑ
(ϑ) dϑ

= −
ˆ
S1

sin(ϑ)
∂

∂ϑ

(
1

κ

)
dϑ =

ˆ
S1

sin(ϑ)
1

κ2

∂κ

∂ϑ
dϑ .

Additionally, we have

0 = −
ˆ
S1

∂

∂ϑ

(
1

κ

)
dϑ =

ˆ
S1

1

κ2

∂κ

∂ϑ
dϑ .

Hence, 1/κ2 ∂
∂ϑκ is orthogonal to the first five basis functions of the basis (2.6).

Since all the other basis functions are zero at at least four points in [0, 2π] with
distance ≤ π/2, there exists a number i0 ≥ 4 and points ϑi ∈ S1, i ∈ {0, . . . , i0}, so
that (

1

κ2

∂κ

∂ϑ

)
(ϑi, τ) = 0

and
|ϑi − ϑi+1| ≤

π

2
for i ∈ {0, . . . , i0 − 1} and

|ϑi0 − (2π + ϑ0)| ≤ π

2
.

Since 1/κ2 ∂
∂ϑκ is periodic on [0, 2π], i0 is odd. Define the intervals

Ii := [ϑi, ϑi+1]

for i ∈ {0, . . . , i0 − 1} and

Ii0 := [0, ϑ0] ∪ [ϑi0 , 2π) .

Then |Ii| ≤ π/2 for all i ∈ {1, . . . , i0}. Since ∂2
ϑκ = 1/κ − κ, it holds that ∂2

ϑκ 6=
0 when ∂ϑκ = 0, otherwise this second-order ODE for κ would imply ∂ϑκ = 0
everywhere, hence κ = 1 identically and we would be in the case of the unit circle.
Suppose that Σ is neither a line nor a circle. By looking at the equation for the
curvature (2.5) we can see easily that κ < 1 at a local minimum and κ > 1 at a
local maximum. Suppose now that κ(0) is a local maximum and κ(ϑ0) is the first
subsequent critical value for κ for ϑ0 ≤ π/2 by the above. Then the curvature is
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strictly decreasing in the interval [0, ϑ0]. Also κ(ϑ0) < 1 must be a local minimum
of the curvature, as every critical point is not degenerate. By a straightforward
computation, starting by differentiating the equation ∂2

ϑκ = 1/κ− κ, one gets

∂3
ϑκ

2 = 2∂2
ϑ(κ∂ϑκ) = 2∂ϑ(∂ϑκ)2 + 2∂ϑ(κ∂2

ϑκ) = 6∂ϑκ∂
2
ϑκ+ 2κ∂ϑ∂

2
ϑκ

= 6
∂ϑκ

κ
− 6κ∂ϑκ− 2

κ

κ2
∂ϑκ− 2κ∂ϑκ = 4

∂ϑκ

κ
− 4∂ϑκ

2

so that

∂3
ϑκ

2 + 4∂ϑκ
2 = 4

∂ϑκ

κ
.

We compute

4

ˆ ϑ0

0

sin(2ϑ)
∂ϑκ

κ
dϑ =

ˆ ϑ0

0

sin(2ϑ)
(
∂3
ϑκ

2 + 4∂ϑκ
2
)
dϑ

= sin(2ϑ)∂2
ϑκ

2
∣∣ϑ0

0
− 2

ˆ ϑ0

0

cos(2ϑ)∂2
ϑκ

2 dϑ+ 4

ˆ ϑ0

0

sin(2ϑ)∂ϑκ
2 dϑ

= 2 sin(2ϑ0)
(
κ(ϑ0)∂2

ϑκ(ϑ0) + (∂ϑκ)2(ϑ0)
)
− 2 cos(2ϑ)∂ϑκ

2
∣∣ϑ0

0

− 4

ˆ ϑ0

0

sin(2ϑ)∂ϑκ
2 dϑ+ 4

ˆ ϑ0

0

sin(2ϑ)∂ϑκ
2 dϑ

= 2 sin(2ϑ0)
(
κ(ϑ0)∂2

ϑκ(ϑ0) + (∂ϑκ)2(ϑ0)
)

− 4 cos(2ϑ0)κ(ϑ0)∂ϑκ(ϑ0) + 4κ(0)∂ϑκ(0) .

Now, since ∂ϑκ(0) = ∂ϑκ(ϑ0) = 0 using the equation for the curvature ∂2
ϑκ = 1/κ−κ

we get

4

ˆ ϑ0

0

sin(2ϑ)
∂ϑκ

κ
dϑ = 2 sin(2ϑ0)(1− κ2(ϑ0)) ,

and this last term is nonnegative as κ < 1 at a local minimum and 0 < 2ϑ0 ≤ π.
Looking at the left-hand integral we see instead that the factor sin(2ϑ) is always
nonnegative, since 2ϑ0 ≤ π and ∂ϑκ is always nonpositive in the interval [0, ϑ0],
as we assumed that we were moving from a local maximum of κ at 0 to a local
minimum of κ at ϑ0 without crossing any other critical point of κ. This gives a
contradiction so Σ must be the unit circle. �

3. Convex hypersurfaces with pinched second fundamental form

Definition 3.1 (Complete Riemannian manifold). A (geodesically) complete mani-
fold is a Riemannian manifold for which every maximal (inextendible) geodesic is
defined on R.

Definition 3.2 (Conformal map). Two maps X,Y : Mn → Rn+1 are conformal, if
there exists λ : Mn → R with

gXij = λ gYij .

We say X is quasi-conformal with respect to Y if

gXij ≥ λ gYij .

See [Ham94]. Suppose that M = X(Mn) ⊂ Rn+1 = Rn×R is written as a graph
over a convex over a convex open set U ⊂ Rn of a strictly convex function

y = f(x1, . . . , xn)

so that y → ∞ as x = (x1, . . . , xn) → ∂U . By translating upwards if necessary,
since y is bounded below, we can assume y ≥ e everywhere, so that log log y ≥ 0.
Let gij be the Riemannian metric induced on M so that

gij = δij +
∂y

∂xi
∂y

∂xj
.
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Theorem 3.3 (Hamilton, [Ham94, Theorem 2.1]). The conformally equivalent met-
ric

g̃ij =
gij

(y log y)2

is complete with finite volume.

Proof. First, we show that g̃ij is complete. We have det(gij) ≥ 1. For any geodesic
γ : I →M going to infinity, we have γn →∞. Therefore its length satisfies,

L̃(γ) =

ˆ
I

|γ′(t)|g̃ dt ≥
ˆ ∞
γn(a)

√
det(g̃ij)dy

≥
ˆ ∞
γn(a)

dy

y log y
= log log y|∞γn(a) =∞ .

Since geodesics have constant speed, this is what we desired. To estimate the
volume, we observe that, because y is a strictly convex function of x, outside a
compact set we must have ∣∣∣∣ ∂y∂xi

∣∣∣∣ ≥ δ
for some δ > 0 and at least one i ∈ {1, . . . , n}. Let dV denote the volume element
on M in the induced metric gij , which in x coordinates is

dV =

√
det

(
δij +

∂y

∂xi
∂y

∂xj

)
dx1 . . . dxn .

Let k ∈ N and

Mk := M ∩ {e+ k − 1 ≤ y ≤ e+ k}
and let dV k denote the volume element of the part of Mk. We can devide Mk

into pieces Mk
1 , . . . ,M

k
n , where ∂y

∂xi is largest on Mk
i , and estimate dV ki from above

on each piece. For each k ∈ N, on Mk
i , we take x1, . . . , xi−1, y, xi+1, . . . , xn as

coordinates. Since ∂y
∂xi is larger than the other derivatives, and

∣∣ ∂y
∂xi

∣∣ ≥ δ > 0,√
det

(
δij +

∂y

∂xi
∂y

∂xj

)
≤ C

∣∣∣∣ ∂y∂xi
∣∣∣∣

and thus

dV ki ≤ Cdx1 . . . dxi−1dydxi+1 . . . dxn

on Mk
i . By the gradient estimate shows that

|x| ≤ Cy

for a suitable large constant. Let

Uki :=
{
x ∈ Rn

∣∣ (x, f(x)) ∈Mk
i

}
.

We can integrate in every direction x1, . . . , xi−1, xi+1, . . . xn and estmateˆ
Uki

dV ki ≤ C
ˆ
Uki

dx1 . . . dxi−1dydxi+1 . . . dxn ≤ C
ˆ
Uki

yn−1dy ,

that is,

dV iy ≤ Cyn−1dy .

Hence,

dṼ iy ≤
Cdy

y logn y
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and

Ṽ =

ˆ
U

dṼ =
∑
k∈N

n∑
i=1

ˆ
Uki

dṼ ki ≤ C
∑
k∈N

n∑
i=1

ˆ
Uki

dy

y logn y

= C

ˆ ∞
e

dy

y logn y
=

−C
(n− 1) logn−1 y

∣∣∣∣∞
e

=
C

n− 1
<∞ . �

Remark 3.4. (i) Let p, q ∈ Sn. We rotate the sphere so that the north pole
N lies on the geodesic between p and q with equal distance to both points.
The stereographic projection ϕ : Sn \ {N} → Rn, which is conformal, projects
the sphere to the plane. We can choose the projection such that ϕ(p), ϕ(q) ∈
{xn = 0}. By construction, |ϕ(p)| = |ϕ(q)| = r. Via the inverse stereographic
projection ψ : Rn → Snr \ {N} we can conformally project the plane to the
sphere of radius r. The points ϕ(p) and ϕ(q) are mapped antipodally to the
equator. Hence, 1/r ◦ ψ ◦ ϕ : Sn \ {N} → Sn \ {N} is a conformal map that,
after rotation, maps p to the north pole and q to the south pole.

(ii) Let X be an embedding of the Sn−1, Y be an embedding of the Sn and Z be
an embedding of the cylinder Sn−1 × [−R,R], where

Y (x, ϑ) = (X(x) cos(ϑ), sin(ϑ))

and

Z(x, ϑ) = (X(x), z(ϑ))

for ϑ ∈ [−π/2, π/2). Then(
gYij
)

=

(
cos2(ϑ) gXij 0

0 1

)
and (

gZij
)

=

(
gXij 0
0 (z′(ϑ))2

)
.

For Y and Z to be conformal with
(
gYij
)

= λ
(
gZij
)
, we have to choose

λ(ϑ) = cos2(ϑ) and z′(ϑ) =
1

cos(ϑ)

for ϑ ∈ [−π/2 + ε, π/2− ε], where ε > 0 and R = R(ε), which is realized by

z(ϑ) = log

(
tan

(
θ

2
+
π

4

))
.

Theorem 3.5 (Hamilton, [Ham94]). Let U be an open subset of the unit sphere
Sn which is not empty and whose closure is not the whole sphere. Then there is no
metric on U , conformal with respect to the round metric, which is complete with
finite volume.

Proof. By hypotheses we can find some point pN which is contained in U , and some
point pS which avoids the closure of U . By Remark 3.4, we can assume that pN
is the north pole and pS is the south pole. We can then find an ε > 0 so that the
ε-ball around pN lies in U ,

Bε(pN ) ⊂ U
while the ε-ball around pS avoids U ,

Bε(pS) ⊂ Sn \ U .

By Remark 3.4, we can find a conformal map ϕ of the sphere Sn minus these two
balls to the cylinder Sn−1 × [0, L],

ϕ : Sn → Sn−1 × [0, L]
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taking the boundary of the ε-ball around pN to Sn−1 × {0}

ϕ(∂Bε(pN )) = Sn−1 × {0}
and the boundary of the ε-ball around pS to Sn−1 × {L},

ϕ(∂Bε(pS)) = Sn−1 × {L} .
The part of U outside the ε-ball around pN will map to some relatively open subset

W := ϕ(U \Bε(pN )) ⊂
(
Sn−1 × [0, L]

)
\
(
Sn−1 × {L}

)
of the cylinder which contains Sn−1 × {0} and avoids Sn−1 × {L},

Sn−1 × {0} ⊂W .

The subset W will be a noncompact manifold with one compact boundary compo-
nent Sn−1. Any complete metric

gU on U

with finite volume conformal to the round metric

gS
n

on Sn

would give a complete metric with finite volume on

gW on W

conformal to the product metric

gS
n−1×[0,L] on Sn−1 × [0, L] .

We show that such cannot exist. We introduce coordinates

ϑ = (ϑ1, . . . , ϑn−1) on Sn−1

and

t on [0, L]

Let gS
n−1

denote the metric on Sn−1 and dµ the volume form. Then

g := gS
n−1×[0,L] =

(
gS
n−1

0
0 1

)
is the product metric on Sn−1 × [0, L] and

dV = dµdt

is the product volume form. For every ϑ ∈ Sn−1, there will be a first point

t = h(ϑ)

where the pair (ϑ, t) is no longer in W . Of course h may not be a continuous
function and the pair may reenter W for larger values of t. This does not matter.
Any quasi-conformally equivalent metric on W is given by

g̃ = λ(ϑ, t)g

for some funtion λ defined at least for 0 ≤ t ≤ h(ϑ). The corresponding volume
form is

dṼ = λndµdt .

If the total volume Ṽ of W in the conformally equivalent metric is finite, we have¨
W

λndµdt = Ṽ <∞ .

By Hölder’s inequality
¨
W

λ dµdt ≤
(¨

W

λndµdt

)1/n(¨
W

dµdt

)(n−1)/n
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and surely ¨
W

dµdt ≤ L|Sn−1| <∞ .

Therefore ¨
0≤t<h(ϑ)

λ(ϑ, t)dµdt <∞ .

On the other hand, if we integrate first in t, we see that
ˆ
Sn−1

(ˆ h(ϑ)

0

λ(ϑ, t) dt

)
dµ ≥ |Sn−1| inf

ϑ∈Sn−1

ˆ h(ϑ)

0

λ(ϑ, t) dt

and therefore

inf
ϑ∈Sn−1

ˆ h(ϑ)

0

λ(ϑ, t) dt <∞ .

But along a path where ϑ is constant we have g̃ = λ. Thus there is some ϑ where
the path from (ϑ, 0) to (ϑ, h(ϑ)) has finite length. This shows that the metric is not
complete and proves the theorem. �

Theorem 3.6 (Hamilton, [Ham94, Theorem 1.1]). Let M be a smooth strictly
convex hypersurface bounding a region in Rn+1, n ≥ 2. Suppose that its second
fundamental form is ε-pinched in the sense that

hij ≥ εHgij
for some ε > 0. Then M is compact.

Proof. Assume that M is noncompact. By Theorem 3.3, M has a conformally
equivalent metric g̃ij which is complete with finite volume. Observe that the Gauss
map ν : M → Sn gives a diffeomorphism of the convex hypersurface M onto an
open subset U = ν(M) of the sphere Sn which lies in a hemisphere. Thus U is not
empty and its closure is not all of Sn. By Theorem 3.5, there is no metric ĝij on
U , quasi-conformal with respect to the round metric, which is complete with finite
volume. However, the pinching condition implies

εHδki ≤ hki ≤ Hδki
so that

εH∂i = εHδki ∂k ≤ hki ∂k = ∂iν ≤ Hδki ∂k = H∂i .

We define
ĝij := 〈∂iν, ∂jν〉

and observe that
(εH)2gij =

(
εH̃
)2
g̃ij .

Hence, (
εH̃
)2
g̃ij ≤ ĝij ≤ H̃2g̃ij .

If g̃ij is complete, ĝij is, by the first inequality. If g̃ij has finite Volume, ĝij must
have by the second inequality. This is a contradiction. �

4. Singularities

Definition 4.1 (Singularities, see [Eck04, Definitions 3.5 and 5.1]). We say that a
solution (Mt)t∈[0,T ) of (MCF) reaches a point x0 ∈ Rn+1 at time T ≤ ∞ if there
exists a sequence (pk, tk)k∈N in Mn× [0, T ) with tk ↗ T so that X(pk, tk)→ x0 for
k →∞.

Let S be the set of points x ∈ Rn+1 so that there exists a sequence (pk, tk)k∈N
with tk ↗ T and X(pk, tk)→ x for k →∞. We call S the set of reachable points.

A point x0 ∈ R2 is called a singular or blow-up point of the flow at time T if
(Mt)t∈[0,T ) reaches x0 at time T and has no smooth extension beyond time T in
any neighbourhood of x0. The sequence (pk, tk)k∈N is called blow-up sequence.
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All other points (which includes those not reached by the solution) are called
regular points.

We want to investigate singularities of the flow.

Proposition 4.2. Let T < ∞. If |A|2 ≤ C0 on Mn × [0, T ), then |∇mA|2 ≤ Cm
on Mn × [0, T ), where Cm = Cm(n,M0, C0).

Proof. See [Sch17d, Proposition 2.1.5]. By Lemma 1.4,

∂t|∇mA|2 ≤ ∆|∇mA|2 − 2|∇m+1A|2 + C(n,m)
∑

i+j+k=m

|∇iA||∇jA||∇kA||∇mA| .

We give a proof by induction. The case m = 0 is trivially true. So we assume that
for m > 0 we have |∇lA|2 ≤ Cl for 0 ≤ l ≤ m− 1. Thus

∂t|∇m−1A|2 ≤ ∆|∇m−1A|2 − 2|∇mA|2 +Bm−1

and

∂t|∇mA|2 ≤ ∆|∇mA|2 −Bm
(
1 + |∇mA|2

)
.

We consider the function f := |∇mA|2 +Bm|∇m−1A|2, which satisfies

∂tf ≤ ∆f −Bm
(
1 + |∇mA|2

)
− 2Bm|∇mA|2 +Bm−1Bm

≤ ∆f −Bmf +B2
m|∇m−1A|2 +Bm−1Bm

≤ ∆f −Bmf +B .

Define f̃ := exp(Bmt)f − exp(BmT )Bt. Then

∂tf̃ ≤ exp(Bmt)(Bmf + ∂tf)− exp(BmT )B

≤ exp(Bmt)(∆f +B)− exp(BmT )B ≤ ∆f̃

which implies f̃(·, t) ≤ maxM f̃(·, 0) and thus

f(·, t) ≤ exp(−Bmt)
(

max
M

f̃(·, 0) + exp(BmT )Bt
)
≤ C . �

Theorem 4.3. Let T <∞ and (Mt)t∈[0,T ) be a family of smooth, immersed hyper-
surfaces evolving by (MCF) with

Mt ∩BR(0) 6= ∅

for some R > 0 and all t ∈ [0, T ) and there exists C0 <∞ such that

sup
t∈[0,T )

sup
Mt

|A| ≤ C0 .

Then MT is smooth.

Proof. By Proposition 4.2,

sup
t∈[0,T )

sup
Mt

|∇m|A|| ≤ Cm

for all m ∈ N ∪ {0}. By Lemma 1.4,

∂tν = ∇H

so that the rotation of the normal is uniformly bounded in small space-time neigh-
bourhoods. That is, there exist t0 ∈ [0, T ), r > 0 and ε > 0 so that for each p ∈Mn

there exists an open neighbourhood

Ur,t0(p) = X−1(Br(X(p, t0)), t0) ⊂ Rn ,

where Br is the geodesic ball in Mt0 , so that, after rotation and translation,

ν(q, t) ∈ Sn ∩ {xn ≥ ε}
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for all q ∈ Ur,t0(p) and t ∈ [t0, T ). For R0 ≥ R, there exist finitely many points

{pi}N0
i=1 so that

Mt ∩BR0(0) ⊂
N0⋃
i=1

X(Ur,t0(pi), t)

for all t ∈ [t0, T ). For p ∈ {pi}N0
i=1 we can write

Mt ∩X(Ur,t0(p), t)

as a graph of a function f : Ur,t0(p)× [t0, T )→ R with |Dmf | uniformly bounded on
Ur,t0(p)× [t0, T ) for all m ∈ N ∩ {0}. Let (tk)k∈N with tk ↗ T . By Arzelá–Ascoli,
for each m ∈ N ∩ {0}, the sequence

(fmk := Dmf(·, tk))k∈N

converges uniformly along a subsequence to a continuous limit

fm∞ = Dmf∞ = Dmf(·, T ) .

Hence, f(·, T ) is smooth. This can be done for each i ∈ {1, . . . , N0}. We define

Xk := X(·, tk) .

Locally, we can describe Xk via fk. Thus X(·, T ) is smooth on
⋃N0

i=1 Ur,t0(pi) and
so is MT ∩ BR0

(0). Let now be (Rl)l∈N be a sequence of radii with R ≤ Rl ↗ ∞.

For each l ∈ N, there exist finitely many points {pi}Nli=1 so that

Mt ∩BRl(0) ⊂
Nl⋃
i=1

X(Ur,t0(pi), t)

for all t ∈ [t0, T ). Define

X l
k := X l(·, tk)

locally via f lk. By the same argument as above, X l
∞ = X l(·, T ) :

⋃Nl
i=1 Ur,t0(pi) →

Rn+1 and MT ∩BRl(0) is smooth for every l ∈ N. We now pick a diagonal sequence
to obtain a smooth limit X∞∞ = X(·, T ) : Mn → Rn+1 with image MT which
coincides with X l

∞ on every ball BRl(0). Since Mt → MT continuously for t → T ,
the smooth convergence holds for t→ T . �

Corollary 4.4. If T <∞, then lim supt→T maxMt |A|2 =∞.

Proof. See [Sch17d, Corollary 2.1.6]. Let us assume to the contrary that |A|2 ≤ C0

on Mn×[0, T ). By Proposition 4.2 all higher derivatives of A are uniformly bounded
on Mn × [0, T ). By Theorem 4.3, X( · , T ) is a smooth immersion. By short-time
existence this implies that we can extend the solution further, which contradicts
the assumption that T is maximal. �

Lemma 4.5 (Hamilton’s trick [Ham86, Lemma 3.5]). Let f : [a, b]× (0, T )→ R be
in C1. Then fmax(t) := maxp∈[a,b] f(p, t) is locally Lipschitz for t ∈ (0, T ) and at a
differentiable time,

d

dt
fmax(t) ≤ sup

{
∂tf(p, t)

∣∣∣∣ p ∈ [a, b] with f(p, t) = fmax(t)

}
.

Proposition 4.6 (Huisken, [Hui90, Lemma 1.2]). If T <∞, then max |A|2(t)→∞
for t→ T where

max |A|2(t) ≥ 1√
2(T − t)

.
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Proof. By Corollary 4.4, |A|max(t) → ∞ for t → T . For t ∈ (0, T ), let p ∈ Mn so
that |A|2(p, t) = |A|2max(t). Then

Hess |A|2(p, t) � 0 .

By Lemma 1.4
∂t|A|2 = ∆|A|2 − |∇A|2 + 2|A|4 ≤ 2|A|4

at (p, t). Since |A|2max is Lipschitz we obtain by Rademacher’s theorem, Theo-
rem A.3, that ∂t|A|2max exists for almost every t ∈ (0, T ). By Hamilton’s trick,
Lemma 4.5,

∂t|A|2max(t) ≤ max
{
∂t|A|2(p, t)

∣∣ p ∈Mn with |A|2(p, t) = |A|2max(t)
}

≤ max
{

2|A|4(p, t)
∣∣ p ∈Mn with |A|2(p, t) = |A|2max(t)

}
= 2|A|4max(t)

for almost every t ∈ (0, T ). Assume that there exists a time t0 ∈ [0, T ) where
|A|2max = 0. Then Mt0 is a plane segment in Rn+1 which contradicts that T < ∞.
Hence, |A|2max(t) > 0 for all t ∈ [0, T ) and |A|−2

max is Lipschitz as well. Rademacher’s
theorem implies that ∂t|A|−2

max(t) exists for almost every t ∈ (0, T ). Thus,

∂t|A|−2
max = −|A|−4

max∂t|A|2max ≥ −2 (4.1)

for almost every t ∈ (0, T ). Since |A|−2
max is Lipschitz, we can integrate (4.1) over an

interval [t, tk] ⊂ [0, T ) to obtain

1

|A|2max(tk)
− 1

|A|2max(t)
≥ −2(tk − t) . (4.2)

Let t ∈ [0, T ) and (tk)k∈N be a sequence with tk ∈ (t, T ) for all k ∈ N, tk ↗ T and
|A|2max(tk)→∞ for k →∞. Taking the limit k →∞ in (4.2) yields

1

|A|2max(t)
≤ 2(T − t)

for all t ∈ [0, T ). �

Example 4.7. (i) The curvature of the spheres Snr(t) blows up in the exact rate.

(ii) A dumbbell with a small neck develops a singularity at the neck before the
surface disappears.

We distinguish between two types of singularities.

Definition 4.8 (Type-I and type-II singularities). We say that a singularity is of
type I, if there exists a constant C0 > 1 so that

|A|max(t) ≤ C0√
T − t

(4.3)

for all t ∈ [0, T ), and of type II, if such a constant does not exist, that is,

lim sup
t→T

|A|max(t)
√
T − t =∞ . (4.4)

Remark 4.9 (Parabolic rescaling). Let λ > 0 and t0 ∈ (0, T ). Consider the rescaled
flow Xλ : Mn × [−λ2t0, t0)→ R2 with

Xλ(p, τ) = λ
(
X
(
p, t0 +

τ

λ2

)
− x0

)
.

and define
Mλ
τ := λ

(
Mt0−τ/λ2 − x0

)
.

Then τ = λ2(t− t0), ∂τ = 1
λ2 ∂t, g

λ
ij = λ2gij and hλij = λhij so that

|Aλ| =
1

λ
|A| and Hλ =

1

λ
H

so that

∂τXλ =
1

λ
∂tX = − 1

λ
Hν = −Hλν
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again flows by mean curvature flow.

Theorem 4.10. Let T < ∞ and k ∈ N. Let ∅ 6= Jk ⊂ Jk+1 be a sequence
of intervals and (Mk

τ )τ∈Jk be families of smooth, immersed hypersurfaces evolving
by (MCF) for each k ∈ N with

Mk
τ ∩BR(0) 6= ∅

for some R > 0 and for all k ∈ N and all τ ∈ Jk, and there exists C0 < ∞ such
that

sup
k∈N

sup
τ∈Jk

sup
Mk
τ

|Ak| ≤ C0 .

Then there exists a subsequence
(
(Mk

τ )τ∈Jk
)
k∈N that converges on compact subsets

of J∞ and in Rn+1 to a smooth, immersed limit flow (M∞τ )τ∈J∞ evolving by (MCF).

Proof. By Proposition 4.2,

sup
k∈N

sup
τ∈Jk

sup
Mk
τ

|∇m|Ak|| ≤ Cm

for all m ∈ N ∪ {0}. Let R0 ≥ R, k0 ∈ N and τ0 ∈ Jk for k ≥ k0. Since Mk
τ0 is

smooth and

M̃k
τ0 := Mk

τ0 ∩B
n+1
R0

(0) 6= ∅

for every k ∈ N, there exists a subsequence (M̃k
τ0)k∈N with continuous limit

M̃∞τ0 ⊂ B
n+1
R0

(0) .

Moreover, there exists r > 0 so that for every x ∈ M̃∞τ0 ,

M̃∞τ0,r(x) := M̃∞t0 ∩B
n+1
r (x)

can be written as a graph of some function g : Bnr (x) ⊂ P (x)→ R over some affine

tangent plane P (x) at x. By the convergence, there exists a subsequence (M̃k
t0)k∈N

so that, for k big enough,

M̃k
τ0 ∩B

n+1
r (x)

can be written as graphs of some function gk : Bnr/2(x) → R over the same affine

plane P (x). By the uniform bounds on |Ak|, |Dmgk| is uniformly bounded for all
m ∈ N and gk is smooth for every k ≥ k0. Furthermore, there exists δ, ε > 0 so
that, after rotation and translation,

νk(y) ∈ Sn ∩ {xn ≥ ε}

for all y ∈ M̃k
τ ∩ Bn+1

r (x) and τ ∈ (τ0 − δ, τ0 + δ), so that M̃k
τ ∩ Bn+1

r (x) can be
written as graphs of the functions fk : Bnr/2(x)× (t0− δ, t0 + δ)→ R. Since all time

derivatives can be expressed in terms of spatial derivatives, f is smooth in time. By
Arzelá–Acsoli, (fk)k∈N converges along a subsequence to a smooth limit f∞. Like
in the proof of Theorem 4.3, we can repeat this process this for a sequence (Rl)l∈N
with R ≥ Rl → ∞, and after picking a diagonal sequence we obtain a smooth
limit M∞τ ⊂ Rn+1. Note that a subsequence of the Xk(·, τ) does not necessarily
converge to a limiting immersion; it will be necessary to “reparametrize” Xk(·, τ)
(see [Lan85, ] for details). �

5. Typ-I singularities

We want to rescale the surface Mt near a type-I singularity as t→ T <∞. The
following rescaling technique was introduced in [HS99b, Remark 4.6].
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Definition 5.1 (Type-I rescaling). Let (pk, tk)k∈N be a blow-up sequence in Mn×
[0, T ) with tk ↗ T for k →∞ and

|A|2(pk, tk) = max
p∈Mn

|A|2(p, tk) = max
Mn×[0,tk]

|A|2(p, t)

for each k ∈ N. We set

λ2
k := |A|2(pk, tk) and αk := −λ2

kT

and define the rescaled embeddings Xk : Mn × [αk, 0)→ R2 by

Xk(p, τ) := λk

(
X

(
p, T +

τ

λ2
k

)
− x0

)
. (5.1)

Lemma 5.2 (Properties of the type-I rescaling). Let X : Mn × (0, T ) → R2 be a
solution of (MCF) with T < ∞. For the type-I rescaling 5.1 in case of a type-I
singularity,

λk →∞ and αk → −∞
for k →∞. Furthermore,

Xk(0, τk) ∈ B3C2
0
(0) and |Ak|2(0, τk) = 1 ,

where

τk := −λ2
k(T − tk) ∈

[
−C

2
0

2
,−1

2

]
and, for δ > 0,

max
Mn×[αk,−δ2]

|Ak| ≤
C0

δ

for all k ∈ N.

Proof. We follow [MB14, Corollary 4.8, Lemma 7.1.8 and Proposition 7.1.10]. Let
x0 ∈ Rn+1 be a singular point with corresponding blow-up sequence (pk, tk)k∈N in
Mn× [0, T ). By the definition (4.3) of a type-I singularity, we calculate for p ∈Mn

and tk, tl ∈ [0, T ),

|X(p, tl)−X(p, tk)| ≤
ˆ tl

tk

∣∣∣∣∂X∂t (p, t)

∣∣∣∣ dt ≤ ˆ tl

tk

|H(p, t)| dt

≤ 2

ˆ tl

tk

|H|max(t) dt ≤ 2

ˆ tl

tk

C0√
2(T − t)

dt

= C0

(
−
√

2(T − tl) +
√

2(T − tk)
)
≤ C0

√
2(T − tk) . (5.2)

Since the sequence (pk)k∈N is bounded, there exist a point p0 ∈ Mn and a subse-
quence with

pk → p0 (5.3)

for k →∞. We employ (5.2) for p = pl, and obtain

|X(pl, tl)−X(pl, tk)| ≤ C0

√
2(T − tk) (5.4)

for all k, l ∈ N. By Definition 5.1, we can choose l0 = l0(k) large enough so that,
for fixed k ∈ N,

|X(pl, tl)− x0| ≤ C0

√
2(T − tk) (5.5)

for all l ≥ l0. Estimates (5.4) and (5.5) imply

|X(pl, tk)− x0| ≤ |X(pl, tk)−X(pl, tl)|+ |X(pl, tl)− x0|

≤ 3C0

√
2(T − tk) (5.6)
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for fixed k ∈ N and for all l ≥ l0(k). For given ε > 0, choose k0 = k0(ε) large
enough, so that

3C0

√
2(T − tk) <

ε

2
.

for all k ≥ k0. Then (5.6) yields

|X(pl, tk)− x0| <
ε

2

for all k ≥ k0(ε) and l ≥ l0(k). By the convergence (5.3) and the continuity of the
immersion X in its spatial argument, we can further choose l0 large enough, so that
also

|X(p0, tk)−X(pl, tk)| < ε

2
for l ≥ l0. Hence,

|X(p0, tk)− x0| ≤ |X(p0, tk)−X(pl0 , tk)|+ |X(pl0 , tk)− x0| < ε

for all k ≥ k0(ε). Since ε > 0 was chosen arbitrarily, we obtain

X(p0, tk)→ x0 (5.7)

for k →∞. Definition 5.1 and the type-I condition (4.3) yield

λk = |A(pk, tk)| ≤ C0√
2(T − tk)

and the estimate (5.2) implies

|X(p0, tl)−X(p0, tk)| ≤ 2C0

√
2(T − tk) ≤ 2C2

0

λk
.

We send l→∞ in the above inequality and obtain with (5.7),

λk|x0 −X(p0, tk)| ≤ 2C2
0

for all k ∈ N. The definition (5.1) of the rescaled embedding provides, for τk :=
λ2
k(tk − T ),

|Xk(p0, τk)| = λk

∣∣∣∣X(p0, T +
τk
λ2
k

)
− x0

∣∣∣∣ ≤ 2C2
0

for all k ∈ N. By the convergence (5.3), for given δ > 0, there exists k1 ∈ N so that
|pk − p0| < δ for all k ≥ k0. By the continuity of the rescaled embedding, for given
ε > 0, there exists δ > 0 so that, for |pk − p0| < δ, we have

|Xk(pk, τk)−Xk(p0, τk)| < ε .

Hence, for given ε > 0, there exists k1 ∈ N so that

|Xk(0, τk)| = |Xk(pk, τk)| ≤ |Xk(pk, τk)−Xk(p0, τk)|+ |Xk(p0, τk)| < ε+ 2C2
0

for all k ≥ k1. Choosing ε = C2
0 yields Xk(0, τk) ∈ B3C2

0
(0) for all k ≥ k1. To

bound the sequence (
τk = −λ2

k(T − tk)
)
k∈N ,

we estimate

αk = −λ2
kT < −λ2

kT + λ2
ktk = τk < 0

for all k ∈ N. The rescaling behaviour from Remark 4.9 of the curvature yields

|Ak|2(0, τk) = |Ak|2(pk, τk) =
1

λ2
k

|A|2
(
pk, T +

τk
λ2
k

)
=

1

λ2
k

|A|2(pk, tk) = 1 .

Using Definition 5.1 and the lower blow-up rate from Proposition 4.6, we estimate

τk = −λ2
k(T − tk) = −|A|2(pk, tk)(T − tk) ≤ − (T − tk)

2(T − tk)
= −1

2
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and, by the type-I assumption (4.3),

τk = −λ2
k(T − tk) = −|A|2(pk, tk)(T − tk) ≥ −C

2
0 (T − tk)

2(T − tk)
= −C

2
0

2

for all k ∈ N. For the curvature estimate, let δ > 0, k ∈ N, τ ∈ [αk,−δ2] and
p ∈Mn. Then, the type-I condition (4.3) rescales to

|Ak(p, τ)| = 1

λk

∣∣∣∣A(p, T +
τ

λ2
k

)∣∣∣∣ ≤ 1

λk

C0√
−2τ/λ2

k

≤ C0√
−τ

.

Hence,

max
Mn×[αk,−δ2]

|Ak| ≤
C0

δ

for each k ∈ N. �

Theorem 5.3 (Convergence of rescalings). Let (Mt)t∈[0,T ) be a smooth, immersed
solution of (MCF) with T < ∞. For the type-I rescaling 5.1 in case of a type-I
singularity, there exists a sequence of rescaled immersions((

Mk
τ

)
τ∈[αk,0)

)
k∈N

that converges for k →∞ along a subsequence, uniformly and smoothly on compact
subsets of (−∞, 0) and Rn+1 to a maximal, smooth limit solution (M∞τ )τ∈(−∞,0)

which satisfies

M∞τ∞ ∩B3C2
0
(0) 6= ∅ and |A∞|2(x) = 1 for some x ∈M∞τ∞ ,

where τ∞ ∈ [−C2
0/2,−1/2] and, for δ > 0,

sup
τ∈(−∞,−δ)

sup
M∞τ

|A∞| ≤
C0

δ2
.

Moreover, if (Mt)t∈[0,T ) is embedded, then (M∞τ )τ∈(−∞,0) is embedded.

Proof. The convergence follows from Theorem 4.10 and Lemma 5.2 yields the prop-
erties. By Proposition 1.9, Mk

τ is embedded for all k ∈ N and all τ ∈ [αk, 0).
Furthermore,

dk(τ) ≥ min

{
dk(αk),

sin(ε)

mk(τ)

}
≥ min

{
λkd(0),

sin(ε)δ2

C0

}
is uniformly bounded in k for τ ≤ δ < 0. �

5.1. Huisken’s monotonicity formula. For x0 ∈ Rn+1 and t0 ∈ R, define the
backward heat kernel Φ(x0,t0) : Rn+1 × (−∞, t0)→ R by

Φ(x0,t0)(x, t) :=
1

(4π(t0 − t))n/2
exp

(
−|x− x0|2

4(t0 − t)

)
.

Let x, x0, y0 ∈ Rn+1, t0, τ0 ∈ R, t ∈ (−∞, t0), λ > 0 and τ0 > λ2(t− t0). Then

Φ(y0,τ0)

(
λ(x− x0), λ2(t− t0)

)
=

1

λn
Φ(x0+y0/λ,t0+τ0/λ2)(x, t) .

For the rescaled flow (Mλ
τ )τ∈[−λ2T,0),

dµnλ =
√

det(gλij) dp =
√
λ2n det(gij) dp = λndµ .

Hence, the integralˆ
Mλ
τ

Φ(y0,τ0) dµ
n
λ =

ˆ
MT−τ/λ2

Φ(x0+y0/λ,T+τ0/λ2) dµ
n

is scaling invariant, which makes it a useful quantity. In the following, we set
H(x, t) = H(p, t) and ν(x, t) = ν(p, t) for x = X(p, t).
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Theorem 5.4 (Monotonicity formula, Huisken [Hui90, Theorem 3.1]). Let X :
Mn × (0, T )→ Rn+1 be a solution of (MCF). Then

d

dt

(ˆ
Mt

Φ(x0,t0) dµ
n
t

)
= −
ˆ
Mt

∣∣∣∣H − 〈x− x0,ν〉
2(t0 − t)

∣∣∣∣2 Φ(x0,t0) dµ
n
t

for t0 ∈ (0, T ] and t ∈ (0, t0).

Proof. We follow the lines of [Hui90, Theorem 3.1]. We set x0 = 0 and t0 = 0.
Since x = x(t) with ∂tx(t) = H, we derive

d

dt
Φ(0,0) =

(
(n/2)4π

−4πt
− 2〈x,H〉
−4t

− |x|
2

4t2

)
Φ(0,0)

=

(
n

−2t
+H

〈x,ν〉
−2t

− |x|
2

4t2

)
Φ(0,0)

so that

d

dt

(ˆ
Mt

Φ(0,0) dµ
n
t

)
=

ˆ
Mt

(
n

−2t
+H

〈x,ν〉
−2t

− |x|
2

4t2
−H2

)
Φ(0,0) dµ

n
t

Observe that

−H2 +H
〈x,ν〉
−t

− 〈x,ν〉
2

4t2
= −

∣∣∣∣H − 〈x,ν〉−2t

∣∣∣∣2
and

|x|2 = 〈x,ν〉2 + gij〈x, ∂iX〉〈x, ∂jX〉 .
Hence,

n

−2t
+H

〈x,ν〉
−2t

− |x|
2

4t2
−H2

=
1

−2t

(
n−H〈x,ν〉 − 1

−2t
gij〈x, ∂iX〉〈x, ∂jX〉

)
−
∣∣∣∣H − 〈x,ν〉−2t

∣∣∣∣2 . (5.8)

For x ∈Mt,
divMt

x = divMn X(p, t) = n

and by the divergence theorem,

−
ˆ
Mt

H〈x,ν〉Φ(0,0) dµ
n
t =

ˆ
Mt

〈x,H〉Φ(0,0) dµ
n
t = −

ˆ
Mt

divMt

(
xΦ(0,0)

)
dµnt ,

where
divMt

(
xΦ(0,0)

)
= Φ(0,0) divMt x+

〈
x,∇MtΦ(0,0)

〉
.

We calculate on Mt,

∇MtΦ(0,0) = −Φ(0,0)g
ij 2〈x, ∂ix〉
−4t

∂jX = −Φ(0,0)g
ij 〈x, ∂iX〉
−2t

∂jX .

so that

divMt

(
xΦ(0,0)

)
= n− 1

−2t
gij〈x, ∂iX〉〈x, ∂jX〉Φ(0,0)

which proves the claim. �

Theorem 5.5 (Weighted monotonicity formula, [Eck04, Theorem 4.13]). Let X :
Mn × (0, T ) → Rn+1 be a solution of (MCF) and ϕ : Rn+1 × (0, T ) → R in C2;1.
Then

d

dt

ˆ
Mt

ϕΦ(x0,t0) dµ
n
t = −

ˆ
Mt

∣∣∣∣H +
(x− x0)⊥

2(t0 − t)

∣∣∣∣2 ϕΦ(x0,t0) dµ
n
t

+

ˆ
Mt

(
∂

∂t
−∆Mt

)
ϕΦ(x0,t0) dµ

n
t

for t0 ∈ (0, T ] and t ∈ (0, t0).
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Proof. The proof is like the one for Theorem 5.4 with one additional step. When
applying the divergence theorem, Theorem A.2, we now use the vector v = xϕΦ(0,0)

instead and deduceˆ
Mt

〈x,Hν〉ϕΦ(0,0) dµ
n
t =

ˆ
Mt

divMt

(
(x)ϕΦ(0,0)

)
dµnt ,

where

divMt

(
xϕΦ(0,0)

)
= nϕΦ(0,0) + ϕ

〈
x,∇MtΦ(0,0)

〉
+
〈
x,∇Mtϕ

〉
Φ(0,0) .

Since ∇Mtϕ = τ i(ϕ)τ i we can utilise the gradient of Φ(0,0) again to find〈
x,∇Mtϕ

〉
−2t

Φ(0,0) = −
〈
∇MtΦ(0,0),∇Mtϕ

〉
so that integration by parts yields the extra termˆ

Mt

〈
x,∇Mtϕ

〉
−2t

Φ(0,0) dµ
n
t =

ˆ
Mt

∆Mt
ϕΦ(0,0) dµ

n
t .

The minus sign comes from the operation in (5.8). �

Remark 5.6 (see [Eck04, Remark 4.8]). If Mt is only defined locally, say in
B√4nρ(x0)× (t0 − ρ2, t0), then we can use the cut-off function

ϕρ(x0,t0)(x, t) =

(
1− |x− x0|2 + 2n(t0 − t)

ρ2

)3

+

where (∂t −∆Mt
)ϕ ≤ 0. Thus we still get the monotonicity inequality

d

dt

ˆ
Mt

ϕρ(x0,t0) Φ(x0,t0) dµ
n
t ≤ −

ˆ
Mt

∣∣∣∣H +
(x− x0)⊥

2(t0 − t)

∣∣∣∣2 ϕρ(x0,t0) Φ(x0,t0) dµ
n
t

for t ∈ (0, t0).

Theorem 5.7. Let M0 be compact, convex and embedded. Then, every limit flow
obtained by the type-I rescaling 5.1 around a type-I singularity, up to a rotation in
Rn+1, must be either the skrinking spheres

(
Sn√−2nτ

)
τ∈(−∞,0)

or one of the shrinking

cylinders
(
Sm√−2mτ

× Rn−m
)
τ∈(−∞,0)

for 0 < m < n.

Proof. Let x0 ∈ Rn+1 be arbitrary. For t ∈ [0, T ), define the monotonicity quantity

Θ(x0,T )(t) :=

ˆ
Mt

Φ(x0,T )(x, t) dµ
n
t .

The monotonicity formula, Theorem 5.4, yields

∂tΘ(x0,T )(t) ≤ 0 (5.9)

for t ∈ (0, T ). Hence, the monotonicity quantity is monotonically decreasing and
strictly positive, so that the limit

lim
t→T

Θ(x0,T )(t)

exists and for any sequence (tk)k∈N with tk ↗ T for k →∞,

lim
t→T

Θ(x0,T )(t) = lim
k→∞

Θ(x0,T )(tk) . (5.10)

For k ∈ N, y = λk(x− x0) ∈ Rn+1 and τ = λ2
k(t− T ) ∈ [αk, 0), the backward heat

kernel rescales according to

Φ(0,0)(y, τ) =
1

λnk
Φ(x0+0/λk,T+0/λ2

k)(x, t) =
1

λnk
Φ(x0,T )(x, t) .

Let τ ∈ (−∞, 0) and k0 ∈ N so that τ ∈ [αk, 0) for k ≥ k0. Let (λk)k∈N be a sequence
of positive real numbers with λk → ∞ for k → ∞. We rescale the flow according
to the type-I rescaling 5.1 with respect to the sequence (λk)k∈N and consider the
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rescaled flow (Mk
τ )τ∈[αk,0). We receive a factor of λnk from the scaling behaviour of

the area element, and a factor of 1/λnk from the scaling behaviour of the backward
heat kernel. Hence, the monotonicity quantity translates, for tk := T + τ/λ2

k, by

Θ(x0,T )(tk) =

ˆ
Mtk

Φ(x0,T )(x, tk) dµntk

=

ˆ
Mk
τ

Φ(0,0)(y, τ) dµnk,τ =: Θk
(0,0)(τ) .

Corollary 4.4 implies that there exist p0 ∈Mn, x0 ∈ Rn+1 and (pk, tk)k∈N with

X(pk, tk)→ x0 and |A(pk, tk)| = max
Mn
|A(·, tk)| → ∞

for k →∞. We rescale according to Definition 5.1 with respect to x0 and (pk, tk)k∈N
and consider the rescaled embeddings Xk : Mn × [αk, 0) → Rn+1. We apply the
monotonicity formula 5.4 and estimate similar to [Bak10, Proposition 6.6] or [Coo11,
Proposition 5.8],

0 ≤
ˆ τ2

τ1

ˆ
Mk
τ

∣∣∣∣Hk +
y⊥

−2τ

∣∣∣∣2 Φ(0,0) dµ
n
τ dτ ≤ Θk

(0,0)(τ1)−Θk
(0,0)(τ2)

= Θ(x0,T )

(
T +

τ1
λ2
k

)
−Θ(x0,T )

(
T +

τ2
λ2
k

)
(5.11)

for all k ≥ k0. Since

T +
τi
λ2
k

→ T

for k → ∞ and i = 1, 2, and by the existence of the limit (5.10), the right-
hand side of (5.11) converges to 0 for k → ∞. By Theorem 5.3, the sequence((
Mk
τ

)
τ∈[τ1,τ2]

)
k∈N converges smoothly along a subsequence and on compact subsets

of Rn+1 to a smooth flow (M∞τ )τ∈[τ1,τ2]. Let R > 0. By the smooth convergence,

there exists a k0 ∈ N so that for all k ≥ k0, Mk
τ ∩ BR(0) can be parametrized over

M∞τ ∩BR(0). That is, there exist embeddings Yk : M∞τ ∩BR(0)→ Rn+1 with

Mk
τ ∩BR(0) = Yk(M∞τ ∩BR(0))

and Yk → id for k →∞. For τ ∈ [τ1, τ2], Fatou’s lemma, Lemma A.4, implies

0 = lim inf
k→∞

ˆ
Mk
τ ∩BR(0)

∣∣∣∣Hk +
y⊥

−2τ

∣∣∣∣2 Φ(0,0) dµ
n
k,τ

= lim inf
k→∞

ˆ
M∞τ ∩BR(0)

∣∣∣∣Hk +
Y ⊥k
−2τ

∣∣∣∣2 Φ(0,0)

√
det(DYk) dx

≥
ˆ
M∞τ ∩BR(0)

lim inf
k→∞

(∣∣∣∣Hk +
Y ⊥k
−2τ

∣∣∣∣2 Φ(0,0)

√
det(DYk)

)
dx

=

ˆ
M∞τ ∩BR(0)

∣∣∣∣H∞ +
Y ⊥∞
−2τ

∣∣∣∣2 Φ(0,0)

√
det(DY∞) dx

=

ˆ
M∞τ ∩BR(0)

∣∣∣∣H∞ +
y⊥

−2τ

∣∣∣∣2 Φ(0,0) dµ
n
∞,τ ≥ 0 .

Thus also ˆ τ2

τ1

ˆ
M∞τ ∩BR(0)

∣∣∣∣H∞ +
y⊥

−2τ

∣∣∣∣2 Φ(0,0) dµ
n
t dτ = 0 .

Since R > 0 was chosen arbitrarily, we deduce
ˆ τ2

τ1

ˆ
M∞τ

∣∣∣∣H∞ +
y⊥

−2τ

∣∣∣∣2 Φ(0,0) dµ
n
t dτ = 0 .
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Since the convergence is smooth, and sending τ1 → −∞ and τ2 → 0 yields∣∣∣∣H∞ +
y⊥

−2τ

∣∣∣∣2 = 0

for every τ ∈ (−∞, 0) and every y ∈M∞τ .

For the area estimate, let again be R > 0 and τ ∈ (−∞, 0). Then there exists
again k0 ∈ N so that τ ∈ [αk, 0) and

T − τ

λ2
k

≥ T

2

for all k ≥ k0. Like in Corollary 1.5,

∂tµ
n
t (Mt ∩BR) = −

ˆ
Mt∩BR

H2dµnt ,

the area is decreasing locally also locally. By (5.9), the monotonicity quantity is
decreasing in time and we can estimate with the definition of the backward heat
kernel and the behaviour of the area of the hypersurfaces,ˆ

Mk
τ ∩BR(0)

Φ(0,0)(y, τ) dµnk,τ

≤
ˆ
M
T−τ/λ2

k
∩BR(x0)

Φ(x0,T )

(
x, T − τ

λ2
k

)
dµnT−τ/λ2

k

≤
ˆ
MT/2∩BR(x0)

Φ(x0,T )

(
x,
T

2

)
dµnT/2

=
1

(4π(T − T/2))n/2

ˆ
MT/2∩BR(x0)

exp

(
− |x− x0|2

4(T − T/2)

)
dµnT/2

≤ C(n, T )µnT/2(MT/2 ∩BR(x0)) ≤ C(n, T )µn0 (M0 ∩BR(x0))

Like before, Fatou’s lemma implies

lim inf
k→∞

ˆ
Mk
τ ∩BR(0)

Φ(0,0) dµ
n
k,τ

= lim inf
k→∞

ˆ
M∞τ ∩BR(0)

Φ(0,0)

√
det(DYk) dx

≥
ˆ
M∞τ ∩BR(0)

lim inf
k→∞

(
Φ(0,0)

√
det(DYk)

)
dx

=

ˆ
M∞τ ∩BR(0)

Φ(0,0) dµ
n
∞,τ .

Furthermore, ˆ
M∞τ ∩BR(0)

Φ(0,0)(y, τ) dµn∞,τ

=
1

(−4πτ)n/2

ˆ
M∞τ ∩BR(0)

exp

(
− |y|

2

−4τ

)
dµn∞,τ

≥ 1

(−4πτ)n/2

ˆ
M∞τ ∩BR(0)

exp

(
− R2

−4τ

)
dµn∞,τ

=
1

(−4πτ)n/2
exp

(
− R2

−4τ

)
µn∞,τ (M∞τ ∩BR(0)) .

so that

µn(M∞τ ∩BR(0)) ≤ C(n, T, τ)µn0 (M0 ∩BR(x0)) exp

(
R2

−4τ

)
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holds for all τ ∈ (−∞, 0).

For every fixed τ ∈ (−∞, 0), by Theorem 5.3, |A| is not identically zero and
|∇mA| ≤ Cm, for every m ∈ N. Theorem 2.4 yields that

M∞τ = Sm√−2mτ
× Rn−m

where 0 < m ≤ n. Since the flow is smooth, the claim follows. �

5.2. Gaussian density.

Definition 5.8 (Gaussian density, [Sch17d, p. 26]). We define the Gaussian density
ratios of the flow M = (Mt)t∈[0,T ) with respect to (x, t) as

Θ(M, (x, t), r) :=

ˆ
Mt−r2

Φ(x,t) dµ
n
t−r2 .

Note that the monotonicity formula implies that Θ(M, (x, t), r) is increasing in r.
In case the flow is only defined locally as in Remark 5.6 we set

Θρ(M, (x, t), r) :=

ˆ
Mt−r2

ϕρ(x,t)Φ(x,t) dµ
n
t−r2 .

Hence as r ↘ 0, the limit exists, so we can set

Θ(M, (x, t)) := lim
r↘0

Θ(M, (x, t), r) ,

called the Gaussian density of M at (x, t).

Remark 5.9. LetM = (Mt)t∈[0,T ) be a smooth mean curvature flow. We say that
(x, t) is a smooth point of the flow, if in a space-time neighbourhood of (x, t) the flow
M is smooth. One can show that at a smooth point (x, t) in the support ofM one
has Θ(M, (x, t)) = 1, and thus at each singular point Θ ≥ 1. Similarly, any point
reached by the flow has Θ ≥ 1. Furthoermore, if M is a smooth mean curvature
flow such that (x, t) is a smooth point of the flow, then that Θ(M, (x, t), r) = 1 for
all r > 0 if and only if M is a multiplicity one plane containing (x, t).

Theorem 5.10 (Local regularity, White [Whi05, Theorem 1.1] see also [Eck04,
Theorem 5.6]). There exist universal constants ε > 0 and C <∞ with the following
property: If M is a smooth mean curvature flow of hypersurfaces in a parabolic ball
P (x0, t0, 2(n+ 1)ρ) with

sup
(x,t)∈P (x0,t0,r)

Θρ(M, (x, t), r) < 1 + ε

for some r ∈ (0, ρ), then

sup
P (x0,t0,r/2)

|A| ≤ C

r
.

Proof. See [HK17, Theorem C.1]. Suppose the assertion fails. Then there exists a
sequence of smooth flows Mj in P (0, 0, 2(n+ 1)ρj) for some ρj > 1 such that

sup
(x,t)∈P (0,0,1)

Θρj (Mj , (x, t), 1) < 1 +
1

j

but such that there are points (xj , tj) ∈ P (0, 0, 1/2) with |A|(xj , tj) > j. We can
find (x̄j , t̄j) ∈ P (0, 0, 3/4) with λj = |A|(x̄j , t̄j) > j such that

sup
(x,t)∈P (x̄j ,t̄j ,j/10λj)

|A|(x, t) ≤ 2λj (5.12)

by the following technique, called point selection. Fix j. If (x0
j , t

0
j ) = (xj , tj) already

satisfies (5.12) with λ0
j = |A|(x0

j , t
0
j ), we are done. Otherwise, there is a point

(x1
j , t

1
j ) ∈ P (x0

j , t
0
j , j/10λ0

j ) with λ1
j = |A|(x1

j , t
1
j ) > 2λ0

j . If (x1
j , t

1
j ) satisfies (5.12),
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we are done. Otherwise, there is a point (x2
j , t

2
j ) ∈ P (x1

j , t
1
j , j/10λ1

j ) with λ2
j =

|A|(x2
j , t

2
j ) > 2λ1

j , etc.. Note that

1

2
+

1

10λ0
j

(
1 +

1

2
+

1

4
+ . . .

)
<

3

4
.

By smoothness, the iteration terminates after a finite number of steps, and the
last point of the iteration lies in P (0, 0, 3/4) and satisfies (5.12). Now let M̂j be
the flows obtained by shifting (xj , tj) to the origin and parabolically rescaling by
λj = |A|(xj , tj) → ∞. Since |A|(0, 0) = 1 and supP (0,0,j/10) |A| ≤ 2, we can pass
smoothly to a nonflat global limit, with

1 ≤ Θρ̂j (M̂j , (0, 0), λj) < 1 +
1

j
→ 1

where ρ̂j = λjρj → ∞. On the other hand, like in the proof of Theorem 5.7, the
limit is a flat plane. This is a contradiction. �

6. Typ-II singularities

The rescaling technique for type-II singularities was introduced in [Ham95a,
Proof of Theorem 16.4] for Ricci flow, and applied to type-II singularities of MCF
in [HS99b, p. 11].

Definition 6.1 (Type-II rescaling). Let (pk, tk)k∈N be a sequence in Mn × [0, T −
1/k] with

H2(pk, tk)

(
T − 1

k
− tk

)
= max

(p,t)∈Mn×[0,T−1/k]

(
H2(p, t)

(
T − 1

k
− t
))

for each k ∈ N. We set

λ2
k := |A|2(pk, tk) , αk := −λ2

ktk and Tk := λ2
k

(
T − 1

k
− tk

)
.

and define the rescaled embeddings Xk : Mn × [αk, Tk]→ R2 by

Xk(p, τ) := λk

(
X

(
p, tk +

τ

λ2
k

)
−X(pk, tk)

)
.

Lemma 6.2 (Properties of the type-II rescaling, [HS99b, Lemma 4.3]). Let X :
Mn×(0, T )→ R2 be a solution of (MCF) with T <∞. For the type-II rescaling 6.1
in case of a type-II singularity,

λk →∞ , αk → −∞ and Tk →∞

for k →∞. Moreover,

Xk(0, 0) = 0 and |Ak|2(0, 0) = 1

for every k ∈ N and for any ε > 0 and any T̄ > 0, there exists a k0 ∈ N such that

max
Mn×[αk,T̄ ]

|Ak|2 < 1 + ε

for all k ≥ k0.

Proof. We follow the lines of [HS99b, Lemma 4.3]. By definition, Xk(0, 0) =
Xk(pk, 0) = 0 and

|Ak|2(0, 0) =
1

λ2
k

|A|2(pk, tk) = 1

for each k ∈ N. Let m > 0 be arbitrary. By the definition (4.4) of a type-II
singularity, there exist t̄ ∈ [0, T ) and p̄ ∈Mn so that

|A|2(p̄, t̄)(T − t̄) > 2m.
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We fix t̄ and choose k0 ∈ N, so that t̄ < T −1/k and |A|2(p̄, t̄)/k < m for all k ≥ k0.
Then

|A|2(p̄, t̄)

(
T − 1

k
− t̄
)

= |A|2(p̄, t̄)(T − t̄)− 1

k
|A|2(p̄, t̄) > m

and Definition 6.1 yields

Tk = |A|2(pk, tk)

(
T − 1

k
− tk

)
≥ |A|2(p̄, t̄)

(
T − 1

k
− t̄
)
> m .

Since m was chosen arbitrarily, it follows that Tk → ∞ and thus also λk =
|A|2(pk, tk) → ∞ for k → ∞. Since tk ↗ T , we conclude that αk = −λ2

ktk → −∞
for k →∞. For the curvature estimate, it again follows from Definition 6.1 that

|A|2(p, t)

(
T − 1

k
− t
)
≤ |A|2(pk, tk)

(
T − 1

k
− tk

)
= Tk (6.1)

for all p ∈ Mn, t ∈ [0, T − 1/k] and k ∈ N. Let ε > 0 and T̄ > 0 be given. Since
Tk →∞, there exists again k1 ∈ N so that, for all k ≥ k1, T̄ < Tk and

0 <
T̄

Tk − T̄
< ε .

For τ ∈ [αk, T̄ ], it is t := tk + τ/λ2
k ∈ [0, T − 1/k), and we can use the scaling

behaviour of the curvature and (6.1) to estimate

|Ak|2(p, τ) =
1

λ2
k

|A|2
(
p, tk +

τ

λ2
k

)
≤ T − 1/k − tk
T − 1/k − (tk + τ/λ2

k)

=
Tk

Tk − τ
≤ Tk
Tk − T̄

= 1 +
T̄

Tk − T̄
< 1 + ε

for all p ∈Mn and k ≥ k1. Hence,

max
Mn×[αk,T̄ ]

|Ak|2 < 1 + ε

for all k ≥ max{k0, k1}. �

Theorem 6.3. Let (Mt)t∈[0,T ) be a smooth, immersed solution of (MCF) with
T <∞. For the type-II rescaling 6.1 in case of a type-II singularity, there exists a
sequence of rescaled immersions((

Mk
τ

)
τ∈[αk,Tk]

)
k∈N

that converges for k →∞ along a subsequence, uniformly and smoothly on compact
subsets of R and Rn+1 to a maximal, smooth limit solution (M∞τ )τ∈R which satisfies
again (MCF) and

0 ∈M∞0 and sup
R×R
|A∞| = |A∞(0)| = 1 .

Moreover, if (Mt)t∈[0,T ) is embedded, then (M∞τ )τ∈(−∞,0) is embedded.

Proof. The convergence follows from Theorem 4.10. Lemma 6.2 implies 0 ∈ M∞0
and |A∞(0)| = 1 and that for any ε > 0 and any T̄ > 0,

sup
R×(−∞,T̄ ]

|A∞|2 ≤ 1 + ε .

Sending T̄ →∞ and ε→ 0 yields

sup
R×R
|A∞| ≤ 1 = |A∞(0)| .

By Proposition 1.9, Mk
τ is embedded for all k ∈ N and all τ ∈ [αk, Tk]. Furthermore,

dk(τ) ≥ min

{
dk(αk),

sin(ε)

mk(τ)

}
≥ min{λkd(0), sin(ε)}

is uniformly bounded in k for τ ∈ R. �
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Remark 6.4. In the following chapters, we will show that the eternal solution
obtained in Theorem 6.3 is convex and translating.

7. Convex hypersurfaces

Theorem 7.1 (Huisken, [Hui84, Corollary 4.2]). Assume M0 = X0(M) closed and
convex, i.e. hij � 0. Then hij � 0 for all t ∈ (0, T ).

Proof. By Lemma 1.4 and Simons’ identity (A.1),

∂thij = ∆hij − 2Hgkmhikhjm + |A|2hij .

Use Theorem D.5 for mij = hij , u
k ≡ 0 and bij = −2Hhilg

lmhmj + |A|2hij . �

Corollary 7.2. There is some ε > 0 such that hij � εHgij holds on M × (0, T ).

Theorem 7.3 (Huisken, [Hui84, Theorem 4.3]). If εHgij � hij � βHgij, and
H > 0 at t = 0 for some constants 0 < ε ≤ 1/n < β < 1, then this remains so on
(0, T ).

Proof. To prove the first inequality, we want to apply Theorem D.5 with

mij =
hij
H
− εgij , uk =

2

H
gkl∇lH , bij = 2εHhij − 2himg

mlhlj .

With this choice the evolution equation in Theorem D.5 is satisfied since

∂t

(
hij
H

)
=

1

H2
(H∆hij − hij∆hij)− 2himg

mlhmj

and

∆

(
hij
H

)
=

1

H2
(H∆hij − hij∆hij)−

2

H
gkl∇kH∇l

(
hij
H

)
.

It remains to check that bij is nonnegative on the null-eigenvectors of mij . Assume
that, for some vector v,

hijv
j = εHvi .

Then we derive

bijv
ivj = 2εHhijv

ivj − 2himg
mIhljv

ivj = 2ε2H2|v|2 − 2ε2H2|v|2 = 0 .

That the second inequality remains true follows in the same way after reversing
signs. �

Theorem 7.4 (Huisken [Hui84]). Let n ≥ 2 and M0 ⊂ Rn+1 be closed, convex and
embedded. Then the mean curvature flow (Mt)t∈[0,T ) starting at M0 converges to a
round point.

Proof. See [Man11, Theorem 3.4.10]. Let T be the maximal time of smooth ex-
istence of the mean curvature flow of an n-dimensional convex hypersurface. By
Theorems 1.10, 7.1 and 7.3, we have that after any positive time H > 0 and there
exists ε > 0, independent of time, such that hij � εHgij . If at time T we have a
type-II singularity, we get an unbounded, eternal convex blow-up limit flow with
H ≥ 0, using Hamilton’s procedure. By the strong maximum principle, actually
H > 0 for every time (otherwise H ≡ 0, but this and the convexity would imply
that the limit flow is simply a fixed hyperplane) and the condition hij � εHgij
passes to the limit. Then, by Theorem 3.6, all the hypersurfaces of the limit flow
are compact, in contradiction with the unboundedness, hence type-II singularities
cannot develop. Dealing with type-I singularities, any blow-up limit is embedded,
strictly convex and compact, again by this theorem. Hence, by Theorem 5.7 it can
be only the sphere Sn. This implies that the full sequence of rescaled hypersur-
faces converges in C∞ to such sphere. Finally, as the blow-up limit is unique and
compact, the original hypersurface shrinks to a point in finite time. �
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Remark 7.5 (Exponential convergence, [Hui84, Lemma 10.6]). Consider the nor-
malized flow

X̃(·, t) = ψ(t)X(·, t)
where ψ is chosen so that ˆ

M̃t

dµ̃ = |M0|

for all t ∈ [0, T ). By choosing

t̃(t) =

ˆ t

0

ψ2(τ) dτ ,

we get that g̃ij = ψ2gij , H̃ = ψ−1H,

ψ−1∂tψ =

´
M̃t

H2 dµ̃

n
´
M̃t

dµ̃
=:

h

n
= ψ−2 h̃

n

and

∂t̃X̃ = ψ−2∂tX̃ = −H̃ν̃ +
h̃

n
X̃

for t̃ ∈ [0,∞). Then there exist constants δ > 0 and C,Cm <∞ such that

H̃max − H̃min ≤ Ce−δt̃ ,∣∣∣∣∣h̃ijH̃ − h̃

n
g̃ij

∣∣∣∣∣ ≤ Ce−δt̃ ,
max
M̃

∣∣∣∇mÃ∣∣∣ ≤ Cme−δt̃
for all m > 0.

8. Hamilton’s Harnack Inequality

We follow [Urb91, Section 2], [And94] and [Sch17d, Chapter 4]. For convex hy-
persurfaces, the initial value problem (MCF) can be reduced to an initial value
problem for the support function. Let M be a smooth, closed, stricly convex hy-
persurface (A is positive definite everywhere). Recall the Gauss map ν : Mn → Sn,
unit normal ν̄ : Mn → Rn+1 and the Weingarten map S : TMn → TMn which
gives the rate of change in the direction of the normal along the surface with

S(v) := dX−1
(
DdX(v)ν̄

)
= dX−1(dvν) .

The second fundamental form A is the symmetric tensor given by the normal com-
ponent of the connection on Rn+1.

A(u, v) = −〈d2X(v, w), ν̄〉 = −〈DdX(v)dX(w), ν̄〉
= 〈dX(w), DdX(v)ν̄〉 = g(w, S(v))

for all v, w ∈ TMn, where dX : TMn → Rn+1. The eigenvalues λ1 . . . λn of S
are called the principal curvatures. Without loss of generality, we may assume that
M encloses the origin. All information about the hypersurface is contained in the
support function s : Mn → R where

s(p) := 〈ν̄(p), X(p)〉 .
For strictly convex hypersurfaces ν is a global diffeomorphism, and we can parame-
trise the hypersurface by X̃ : ν(Mn) ⊂ Sn → Rn+1 where

X̃(z) := X(ν−1(z))

for all z ∈ ν(Mn). We will consider the support function

s(z) := 〈z̄, X̃(z)〉 . (8.1)



36 FRIEDERIKE DITTBERNER

In the following, Indetify z̄ with z. If the support function is known, the hypersur-
face is given as the boundary of the convex region⋂

z∈Sn

{
y ∈ Rn+1 | 〈y, z〉 ≤ s(z)

}
.

Let σij be the metric and ∇̃ be the gradient on Sn. Differentiating (8.1) we obtain

∇̃is = 〈∇̃iX̃, z〉+ 〈X̃, ∇̃iz〉 = 〈X̃, ∇̃iz〉 ,
since ∇̃iX̃(z) is tangential to M at X̃(z), and z is the normal to M at X̃(z). Since
〈z, z〉 = 1, we obtain

〈z, ∇̃iz〉 = 0

and writing ∇̃ij := ∇̃i∇̃j , we obtain

〈z, ∇̃ijz〉 = −〈∇̃jz, ∇̃iz〉 = −σij ,
Hence,

X̃ = 〈X̃, z〉z + σij〈X̃, ∇̃iz〉∇̃jz

= sz + σij∇̃is∇jz = sz + ∇̃s
From this, we conclude at a fixed point

∇̃iX̃ = ∇̃isz + s∇̃iz + ∇̃kisσkl∇̃lz + ∇̃ksσkl∇̃liz

= ∇̃isz + s∇̃iz + ∇̃kisσkl∇̃lz − ∇̃ksσklσliz

= s∇̃iz + ∇̃kisσkl∇̃lz
and

∇̃ijX̃ = ∇̃js∇̃iz − sσijz + ∇̃kijsσkl∇̃lz − ∇̃kisσklσljz

= ∇̃js∇̃iz − sσijz + ∇̃kijsσkl∇̃lz − ∇̃ijsz
so that

h̃ij = −〈∇̃ijX̃, z〉 = sσij + ∇̃ijs
and

g̃ij = s2σij + 2s∇̃ijs+ ∇̃iksσkl∇̃jls = h̃ikσ
klh̃lj

as well as

h̃ji = g̃jkh̃ik = ãjlσlmã
mkh̃ik = σilã

lj

where here (ãij)ij =
(
(h̃ij)ij

)−1
and

H̃ = h̃ii = σij ã
ij

We consider the Weingarten map S̃ : TSn → TSn with

S̃(v) := dX̃−1(dvν̃) .

Since dν̃ = id, we have S̃−1 = dX̃. We define

S̃−1(v) = (σ∗∇̃2s+ s id)(v) = ∇̃v(∇̃s) + s id(v) =: A(v) (8.2)

so that

g̃(u, v) = g̃ijv
iwj = h̃ikσ

klh̃ljv
iwj = σkmã

m
i σ

klσlnã
n
j v

iwj

= σkmã
m
i ã

k
j v
iwj = σ(A(u),A(v)) .

The great advantage of the support function is that it allows us to consider a fam-
ily of convex hypersurfaces simply as an evolving scalar function defined on the
sphere. This makes things much simpler than the more abstract framework al-
lowing arbitrary parametrizations, since we no longer have different descriptions of
the same hypersurface. Furthermore, the identification with the sphere provides a
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time-independent metric and connection, which vastly simplifies many calculations,
including especially those presented here for the proof of the Harnack inequalities.

For the remainder of this section, we consider a familiy of embeddigns X : Mn×
[0, T )→ Rn+1 that solve the initial value problem{

∂tX(p, t) = −F
(
S(p, t),ν(p, t)

)
ν(p, t) for (p, t) ∈Mn × [0, T )

X(·, 0) = X0 on Mn .
(8.3)

where F is such that the equation is parabolic and invariant under diffeomorphisms
of Mn and translations in space and time. We want to reduce (8.3) to an initial
value problem for the support function. Let X be a solution of (8.3), and suppose
that for each t ∈ [0, T ), X(·, t) is a parametrization of a smooth, closed, uniformly

convex hypersurface Mt. We define a new parametrization X̃(·, t) by

X̃(z, t) = X
(
ν−1
t (z), t

)
.

Then

∂tX̃ = ∂iX∂t
(
ν−1
t

)i
+ ∂tX = ∂iX∂t

(
ν−1
t

)i − F̃ z
so that

∂ts = 〈∂tX̃, z〉 = −F̃
since ∂iX is tangential. This proves the following theorem:

Theorem 8.1 (Andrews, [And94, Theorem 3.1]). Let X : Mn × [0, T )→ Rn+1 be
a family of strictly convex immersions satisfying (8.3). Then{

∂ts(z, t) = Φ(A[s(z, t)], z) on Sn × [0, T )

s(·, 0) = s0 on S .
(8.4)

where id is the identity matrix, s0 is the support function of M0,

Φ(A) = − trσ A−1 and A = σ∗∇̃2s+ id s .

The expression (8.2) allows us to use the support function to calculate functions
of the curvature of a hypersurface. We can define Φ : U ⊂ T ∗Sn → R in terms of
X by

Φ(X) = −F̃ (X̃−1)

for all positive definite maps X. Furthermore, Φ̇(A) : T ∗Sn → TSn is given by

Φ̇(A)(B) = ∂r|r=0Φ(A+ rB)

and Φ̈(A) : TSn ⊗ T ∗Sn → TSn ⊗ T ∗Sn by

Φ̈(A)(B, C) = ∂r|r=0Φ̇(A+ rC)(B) .

We call Φ concave (convex), if

Φ̈(A)(B,B) ≤ (≥) 0

for all A,B ∈ T ∗Sn. We call Φ α-concave (α-convex), if

Φ = signαBα ,

where B is positive and concave (convex), α ∈ R. α-concavity (-convexity) is
equivalent to

Φ̈ = α(α− 1)Bα−2Ḃ ⊗ Ḃ + αBα−1B̈ � (�)
α− 1

αΦ
Φ̇⊗ Φ̇ . (8.5)

(These conditions become considerably more complicated when written in terms
of the principal curvatures and a speed function F . For example, concavity of Φ,
becomes F̈ (X,X) + 2Ḟ (X ◦ S−1 ◦X) ≥ 0.)
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Lemma 8.2 (Andrews, [And94, Theorem 3.6 and Lemma 5.1]). The following
evolution equations hold under the Gauss map parametrization of the flow (8.3):

∂t(∇̃2s+ sσ) = ∇̃2Φ + Φσ

∂tA = σ∗∇̃2Φ + Φ id

∂tΦ(A) = Φ̇(A)(σ∗∇̃2Φ) + Φ̇(A)(id)Φ (8.6)

∂2
t Φ(A) = Φ̈(A)(∂tA, ∂tA) + Φ̇(A)(σ∗∇̃2∂tΦ) + Φ̇(A)(id)∂tΦ . (8.7)

Proof. The first equation follows simply by differentiating (8.4), since the metric σ

and connection ∇̃ are independent of time. The second follows immediately from
this. Since Φ depends only on A, we have ∂tΦ = Φ̇(∂tA) which implies the third
equation. By (8.6),

∂2
t Φ = ∂t

(
Φ̇(σ∗∇̃2Φ) + Φ̇(id)Φ

)
= Φ̈(∂tA, σ∗∇̃2Φ) + Φ̇(σ∗∇̃2∂tΦ) + Φ̈(∂tA, id)Φ + Φ̇(id)∂tΦ

= Φ̈(∂tA, ∂tA) + Φ̇(σ∗∇̃2∂tΦ) + Φ̇(id)∂tΦ . �

Lemma 8.3 (Andrews, [And94, Lemma 3.10]). Let f : Mn × [0, T ) → R and

f̃ : Sn × [0, T )→ R be related by

f̃(ν(p, t), t) = f(p, t)

for all p ∈Mn and t ∈ [0, T ). Then

∂tf = ∂tf̃ +A−1(∇F,∇f) .

Proof. Differentiating yields

∂tf = ∂tf̃ + ∂zi f̃∂tν
i = ∂tf̃ + ∂pjf∂zi(ν

−1)j∂piF

= ∂tf̃ + gjk∂pkfa
j
i∂piF = ∂tf̃ + aij∂pif∂piF ,

where (aij)ij =
(
(hij)ij

)−1
. �

Theorem 8.4 (Andrews, [And94, Theorem 5.6]). Let X be a strictly convex solution
to (8.3).

(i) If Φ is α-concave for 0 < α < 1 (α-convex for α > 1), then

∂tΦ +
αΦ

(α− 1)t
≤ (≥) 0 .

for all t ∈ [0, T ).
(ii) If Φ, is positive and concave (convex), then

sup
Sn

(∂t log Φ) is decreasing (increasing).

Proof. We prove the concave cases. For claim (ii), let Φ be concave and set R :=
∂t log Φ. Then

∂tR = ∂t

(
∂tΦ

Φ

)
=
∂2
t Φ

Φ
− (∂tΦ)2

Φ2

as well as

∇̃R = ∇̃
(
∂tΦ

Φ

)
=
∇̃∂tΦ

Φ
− ∂tΦ∇̃Φ

Φ2
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and

∇̃2R = ∇̃

(
∇̃∂tΦ

Φ
− ∂tΦ∇̃Φ

Φ2

)

=
∇̃2∂tΦ

Φ
− 2
∇̃∂tΦ⊗ ∇̃Φ

Φ2
− ∂tΦ∇̃2Φ

Φ2
+ 2

∂tΦ(∇̃Φ)2

Φ3

=
∇̃2∂tΦ

Φ
− 2
∇̃R⊗ ∇̃Φ

Φ
− ∂tΦ∇̃2Φ

Φ2
.

By (8.6) and (8.7),

∂tR =
1

Φ

(
Φ̇(σ∗∇̃2∂tΦ) + Φ̇(id)∂tΦ + Φ̈(∂tA, ∂tA)

)
− R

Φ

(
Φ̇(σ∗∇̃2Φ) + Φ̇(id)Φ

)
≤ Φ̇(σ∗∇̃2R) +

2

Φ
Φ̇
(
σ∗
(
∇̃Φ⊗ ∇̃R

))
+

1

Φ2
Φ̇(σ∗(∂tΦ∇̃2Φ))

+
1

Φ
Φ̇(id)∂tΦ−

R

Φ

(
Φ̇(σ∗∇̃2Φ) + Φ̇(id)Φ

)
= Φ̇(σ∗∇̃2R) +

2

Φ
Φ̇
(
σ∗
(
∇̃Φ⊗ ∇̃R

))
.

The strong parabolic maximum principle, Theorem D.3, implies (ii), since the first
term is an elliptic operator, and the second a gradient term. For claim (i), let Φ be
α-concave with α < 1 and set

R := t∂tΦ +
αΦ

α− 1
,

which is negative at t = 0. Then

∂tR = t∂2
t Φ +

2α− 1

α− 1
∂tΦ

as well as

∇̃R = t∇̃∂tΦ +
α

α− 1
∇̃Φ

and

∇̃2R = t∇̃2∂tΦ +
α

α− 1
∇̃2Φ .

By (8.6), (8.7) and (8.5),

∂tR = t
(

Φ̇(σ∗∇̃2∂tΦ) + Φ̇(id)∂tΦ + Φ̈(∂tA, ∂tA)
)

+
2α− 1

α− 1
∂tΦ

≤ Φ̇(σ∗∇̃2R)− α

α− 1
Φ̇(σ∗∇̃2Φ) + tΦ̇(id)∂tΦ

+ t
α− 1

αΦ
(Φ̇(∂tA))2 +

2α− 1

α− 1
∂tΦ

= Φ̇(σ∗∇̃2R) +
α

α− 1

(
Φ̇(id)Φ− ∂tΦ

)
+ tΦ̇(id)∂tΦ

+ t
α− 1

αΦ
(∂tΦ)2 +

2α− 1

α− 1
∂tΦ

= Φ̇(σ∗∇̃2R) +
α

α− 1
Φ̇(id)Φ + tΦ̇(id)∂tΦ + t

α− 1

αΦ
(∂tΦ)2 + ∂tΦ

= Φ̇(σ∗∇̃2R) +

(
α− 1

αΦ
∂tΦ + Φ̇(id)

)(
t∂tΦ +

αΦ

α− 1

)
= Φ̇(σ∗∇̃2R) +

(
α− 1

αΦ
∂tΦ + Φ̇(id)

)
R .

The weak parabolic maximum principle, Theorem D.2, implies that R stays negative
as long as the solution exists. �
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This calculation can easily be transferred to the standard parametrization, by
writing the various quantities in terms of the metric and connection on the hy-
persurface. This is most easily done by considering the change in the evolution
equations coming from the modified parametrization. Here we denote by A−1 the
map inverse to A.

Corollary 8.5 (Andrews, [And94, Corollary 5.11]). Let X be a strictly convex
solution of ∂tX = −Fν.

(i) If Φ is α-concave for α < 1 (α-convex for α > 1), then

∂tF −A−1(∇F,∇F ) +
αF

(α− 1)t
≥ (≤) 0 .

for all t ∈ [0, T ).
(ii) If Φ is positive and concave (convex), then

sup
Mn

(
∂t log |F | − FA−1(∇ log |F |,∇ log |F |)

)
is decreasing (increasing).

Proof. The claim results from Lemma 8.3 and Theorem 8.4. �

Theorem 8.6 (Andrews, [And94, Theorem 5.17]). Let X be a strictly convex solu-
tion of ∂tX = −Fν.The following inequalities apply in the standard parametrization
for the cases described, for any points p1, p2 ∈Mn, any times 0 < t1 < t2 < T , and
any curve γ between (p1, t1) and (p2, t2).

(i) If Φ is α-concave, α < 0, then

F (p2, t2)

F (p1, t1)
≥
(
t1
t2

)α/(α−1)

exp

(
−1

4

ˆ
γ

F−1A(γ̇, γ̇) dt

)
.

(ii) If Φ is α-convex, α > 1, then

F (p2, t2)

F (p1, t1)
≥
(
t1
t2

)α/(α−1)

exp

(
−1

4

ˆ
γ

|F |−1A(γ̇, γ̇) dt

)
.

(iii) If Φ is convex and positive, then

F (p2, t2)

F (p1, t1)
≥ exp(−C(t2 − t1)) exp

(
−1

4

ˆ
γ

|F |−1A(γ̇, γ̇) dt

)
,

where C = limt↘0 supMn

(
∂t log |F | − FA−1(∇ log |F |,∇ log |F |)

)
,.

Proof. Along a curve γ,

Dγ̇ logF = ∂t logF + 〈γ̇,∇ logF 〉 .

Furthermore,

〈γ̇,∇F 〉 ≤ A−1(∇F,∇F ) +
1

4
A(γ̇, γ̇)

so that, by Corollary 8.5(i),

Dγ̇ logF ≥ FA−1(∇ logF,∇ logF ) + 〈γ̇,∇ logF 〉 − α

(α− 1)t

≥ −1

4
F−1A(γ̇, γ̇)− α

(α− 1)t
.

Integrating along γ yields claim (i). For claim (ii),

Dγ̇ logF ≥ C − 1

4
F−1A(γ̇, γ̇) ≥ −C − 1

4
F−1A(γ̇, γ̇)

respectively,

Dγ̇ logF ≤ C +
1

4
F−1A(γ̇, γ̇) . �
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Remark 8.7. For the mean curvature flow, we have

Φ(A) = −H(S) = −H(A−1) = sign(−1)
(
H−1(A−1)

)−1
.

Since hika
jk = δji and akl = gkmglsams, we have

∂aαβhij = −hikhjl∂aαβakl = −hikhjlgkmglsδαmδβs = −hαi h
β
j

and thus

∂aαβH = gijhαi h
β
j

and

∂aαβ∂aδγH = gijhδih
γ
kg
kαhβj + gijhαi h

δ
jh
γ
kg
kβ .

This yields

∂aαβH
−1 = −H−2gijhαi h

β
j .

Since

∂aαβ∂aδγH
−1 = 2H−2∂aαβH∂aδγH −H−2∂aαβ∂aδγH ,

the eigenvectors {vi} of ∇2
AH

−1 are the eigenvectors of the Weingarten map S, and

∇2
AH

−1(vi, vi, vi, vi) = 2H−3g(S(vi), S(vi)) (g(S(vi), S(vi))−Hg(S(vi), vi)))

= 2H−3κ3
i (κi −H)

is negativ for convex flows. Hence, Φ is (−1)-concave.

Theorem 8.8 (Hamilton [Ham95b, Theorem 1.3]). Let X : Mn×(−∞, T )→ Rn+1

be an ancient mean curvature flow of a complete, strictly convex hypersurface with
bounded second fundamental form at every time and such that H takes its maximum
in space and time. Then, X is a translating flow.

Proof. Define

Z := ∂tH +
H

2(t− t0)
−A−1(∇H,∇H)

then

(∂t −∆)Z = 2gijaklJikJjl +

(
|A|2 − 2

t− t0

)
Z ≥

(
|A|2 − 2

t− t0

)
Z

where

Jik = ∇2
ikH +Hh2

ik − asr∇sH∇rhik +
hik

2(t− t0)
.

By Corollary 8.5 and Remark 8.7, Z ≥ 0. On an eternal solution where H attains
its maximum in space and time, we can send t0 → −∞ and obtain Z = 0 at the
maximum. By the strong maximum principle, Z ≡ 0 so that

∂tH = A−1(∇H,∇H) .

Since

gik = gklδil = gklhjla
ij = hkj a

ij

and, by Codazzi and aijhjk = δik,

ail∇lH = ailgkm∇lhkm = ailgkm∇khlm
= −ailgkmhlshmj∇kasj = −hkj∇kaij ,

we obtain

0 = −ail∇lH∇iH + ∆H +H|A|2

=
(
∇kaij∇iH + aij∇k∇iH +Hhjk

)
hkj .

Consider the vector

V = aij∇iH∇jX +Hν .
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Since

∇k∇jX = 〈∂k∂jX,ν〉ν = −hjkν
and

∇kν = hjk∇jX = gijhik∇jX
as well as aijhjk = δik, we obtain

∇kV = ∇kaij∇iH∇jX + aij∇k∇iH∇jX + aij∇iH∇k∇jX +∇kHν +H∇kν

=
(
∇kaij∇iH + aij∇k∇iH +Hhjk

)
∇jX +

(
∇kH − aij∇iHhjk

)
ν = 0 .

On the other hand, at a fixed point so that the Christoffel symbols vanish,

∂ta
ij = −aikajl∂thkl = −aikajl (∇k∇lH −Hgmshlmhks)

= −aikajl∇k∇lH +Hgij .

and

∂t∂iH = ∂i
(
akl∂kH∂lH

)
= −Hhli∂lH + akl∂kH∂i∂lH

as well as

∂t∂jX = −∂j(Hν) = −∂jHν −Hhkj ∂kX
and

∂tν = gij∂iH∂jX

Together, we obtain,

∂tV = ∂ta
ij∂iH∂jX + aij∂t∂iH∂jX + aij∂iH∂t∂jX + ∂tHν +H∂tν

=
(
Hgij∂iH − aikajl∇k∇lH∂iH − aijHhli∂lH + aijakl∂kH∂i∂lH

+Hgij∂iH
)
∂jX − aij∂iHHhkj ∂kX +

(
akl∂kH∂lH − aij∂iH∂jH

)
ν = 0 .

Hence V is a constant vectorfield in space and time. Let t1 ∈ (−∞, T ) and φ :
Mn →Mn be a diffeomorphism with φ(·, t1) = id and

∂tφ = −aij∇iH∇jX

and X̃(p, t) = X(φ(p, t), t). By Theorem 1.3, X̃(Mn, t) = X(φ(Mn, t), t) = Mt and

X̃(p, t)− X̃(p, t1) = X(φ(p, t), t)−X(p, t1) =

ˆ t

t1

〈DX, ∂tφ〉+ ∂tX dτ

= −
ˆ t

t1

aij∇iH∇jX +Hν dτ = −(t− t1)V

so that Mt = Mt1 − (t − t1)V and the surfaces move by translation in direction
of −V . �

9. Noncollapsing

We follow the lines of [And12].

Definition 9.1 (α-noncollapsed). A mean convex hypersurface M bounding an
open region Ω in Rn is α-noncollapsed (on the scale of the mean curvature) if for
every x ∈M there is an open ball B of radius α/H(x) contained in Ω with x ∈ ∂B.

Note that every compact, smooth, strictly mean convex domain is α-Andrews
for some α > 0.

Given a hypersurface M = X(Mn), define Z : Mn ×Mn → R by

Z(p, q) =
H(p)

2
|X(q)−X(q)|2 + α〈X(q)−X(p),ν(p)〉

Then we have the following characterization:
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Lemma 9.2 (Andrews [And12, Proposition 2]). M is α-noncollapsed if and only
if Z(p, q) ≥ 0 for all p, q ∈Mn.

Proof. A ball in Ω of radius α/H(p) with X(p) as a boundary point must have
centre at the point

z(p) = X(p)− α

H(p)
ν(p) .

The statement that this ball is contained in Ω is equivalent to the statement that
no points of M are of distance less than α/H(p) from z, that is

0 ≤ |X(q)− z(p)|2 −
(

α

H(p)

)2

= 2
Z(p, q)

H(p)

for all p, q ∈ Mn. Since H > 0 this is equivalent to the statement that Z ≥ 0
everywhere. If Z ≥ 0, then by the same equation as above, yields the claim. �

Theorem 9.3 (Andrews [And12, Theorem 3]). Let Mn be a compact manifold, and
X : Mn× [0, T )→ Rn+1 evolve by (MCF) with H > 0. If M0 is α-noncollapsed for
some α > 0, then Mt α-noncollapsed for every t ∈ [0, T ).

Proof. By PLemma 9.2, the claim is equivalent to the statement that the function
Z : Mn ×Mn × [0, T )→ R with

Z(p, q, t) =
H(p, t)

2
|X(q, t)−X(q, t)|2 + α〈X(q, t)−X(p, t),ν(p, t)〉

is nonnegative everywhere provided that it is nonnegative on Mn ×Mn × {0}. We
prove this using the maximum principle. For convenience we denote Hp = H(p, t)
and νp = ν(p, t) an define

d = |X(q, t)−X(p, t)| and w =
X(q, t)−X(p, t)

d

so that

Z = d2Hp

2
+ αd〈w,νp〉 .

We compute the first and second derivatives of Z, with respect to some choices of
local normal coordinates {pi} near p and {qi} near p. Then

∂qiZ = dHp〈w, ∂qi〉+ α〈∂qi ,νp〉 (9.1)

∂piZ = −dHp〈w, ∂pi〉+
d2

2
∇piHp + αdhpijg

jk
p 〈w, ∂pk〉 (9.2)

∂qi∂qjZ = Hp〈∂qi , ∂qj 〉 − dHph
q
ij〈w,νq〉 − αh

q
ij〈νq,νp〉 (9.3)

∂qi∂pjZ = −Hp〈∂qi , ∂pj 〉+ d∇pjHp〈w, ∂qi〉+ αhpjkg
kl
p 〈∂qi , ∂pl〉 (9.4)

∂pi∂pjZ = Hp〈∂pi , ∂pj 〉 − d∇pjHp〈w, ∂pi〉+ dHph
p
ij〈w,νp〉

− d∇piHp〈w, ∂pj 〉+
d2

2
∇pi∇pjHp

+ αd∇pjh
p
ikg

kl
p 〈w, ∂pl〉 − αh

p
ij − αdh

p
ikg

klhpjl〈w,νp〉 (9.5)

∂tZ = dHp〈w,−Hqνq +Hpνp〉+
d2

2

(
∆Hp +Hp|Ap|2

)
+ α〈−Hqνq +Hpνp,νp〉+ αd〈w,∇Hp〉 . (9.6)

Equation (9.1) yields

0 =

〈
∂qi ,νp +

dHp

α
w

〉
− 1

α
∂qiZ =

〈
∂qi ,νp +

dHp

α
w − 1

α
∇qZ

〉
.
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Thus, the vector νp+(dHp/α)w−(1/α)∇qZ is normal to the hypersurface at X(q),
and is a multiple of νq. Furthermore,∣∣∣∣νp +

dHp

α
w − 1

α
∇qZ

∣∣∣∣2
= 1 +

(
dHp

α

)2

+ 2
dHp

α
〈νp, w〉+

1

α2
|∇qZ|2 −

2

α

〈
∇qZ,νp +

dHp

α
w

〉
= 1 +

(
dHp

α

)2

+ 2
dHp

α

(
Z − d2Hp

2

)
+

1

α2
|∇qZ|2

− 2

α

〈
∇qZ,νp +

dHp

α
w − 1

α
∇qZ

〉
− 2

α2
|∇qZ|2

= 1 + 2
Hp

α2
Z − 1

α2
|∇qZ|2 .

where we used the fact that ∇qZ is in the tangent space at X(q), hence orthogonal
to νp + (dHp/α)w − (1/α)∇qZ. This yields

νp +
dHp

α
w − 1

α
∇qZ = νq

√
1 + 2

Hp

α2
Z − 1

α2
|∇qZ|2 . (9.7)

We compute at a point (p, q), p 6= q. Choose local coordinates so that {∂pi} are
othronormal, {∂qi} are othronormal and ∂pi = ∂qi for i = 1, . . . , n − 1. Thus ∂pn
and ∂qn are coplanar with νp and νq. With (9.3), (9.4), (9.5) and (9.6),

LZ :=
(
∂t − gijq ∂qi∂qj − gijp ∂pi∂pj − 2gikp g

jl
q 〈∂pk , ∂ql〉∂pi∂qj

)
Z

= dHp〈w,−Hqνq +Hpνp〉+
d2

2

(
∆Hp +Hp|Ap|2

)
+ α〈−Hqνq +Hpνp,νp〉+ αd〈w,∇Hp〉
− nHp + dHpHq〈w,νq〉+ αHq〈νq,νp〉

− nHp + 2d〈w,∇Hp〉 − dH2
p 〈w,νp〉 −

d2

2
∆pHp − αd〈w,∇Hp〉

+ αHp + αd〈w,νp〉|Ap|2

+ 2(n− 1)Hp + 2〈∂pn , ∂qn〉2Hp − 2dgikp g
jl
q 〈∂pk , ∂ql〉〈w, ∂qj 〉∇piHp

− 2α
(
Hp − hpnn + 〈∂pn , ∂qn〉2hpnn

)
= Z|Ap|2 + 2d

〈
w, ∂pk − 〈∂pk , ∂ql〉gljq ∂qj

〉
gkip ∇piHp

− 2(Hp − αhpnn)
(
1− 〈∂pn , ∂qn〉2

)
.

We observe that

∂pn = 〈∂pn , ∂qn〉∂qn + 〈∂pn ,νq〉νq ,
so that

〈∂pn ,νq〉 = 〈∂pn , ∂qn〉〈∂qn ,νq〉+ 〈∂pn ,νq〉
and

1 = 〈∂pn , ∂qn〉2 + 〈∂pn ,νq〉2 .
At a critical point of Z, we obtain fron (9.1) that 〈w, ∂qi〉 = α/(dHp)〈∂qi ,νp〉.
Hence,

〈w, ∂pi〉 = 〈w, ∂qi〉 = 0

for i = 1, . . . , n− 1 and

〈w, ∂qn〉 =
α

dHp
〈∂qn ,νp〉

Furthermore, by (9.2),

∇piHp =
2

d
〈w,Hp∂pi − αh

p
img

ms
p ∂ps〉
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and by (9.7),

νp +
dHp

α
w = νq

√
1 + 2

Hp

α2
Z =: ρνq ,

so that
dHp

α
〈w, ∂pn〉 = ρ〈νq, ∂pn〉 .

Hence,

2d
〈
w, ∂pk − 〈∂pk , ∂ql〉gljq ∂qj

〉
gkip ∇piHp

= 4(Hp − αhpnn) 〈w, ∂pn − 〈∂pn , ∂qn〉∂qn〉 〈w, ∂pn〉 .

so that

LZ = |Ap|2Z + 2(Hp − αhpnn)Q

where

Q = 2 〈w, ∂pn − 〈∂pn , ∂qn〉∂qn〉 〈w, ∂pn〉 − 〈∂pn ,νq〉2

= 2〈∂pn ,νq〉〈w,νq〉〈w, ∂pn〉 − 〈∂pn ,νq〉2

= 〈∂pn ,νq〉〈2〈w, ∂pn〉w − ∂pn ,νq〉

=
1

ρ
〈∂pn ,νq〉

〈
2〈w, ∂pn〉w − ∂pn ,νp +

dHp

α
w

〉
=

1

ρ
〈∂pn ,νq〉〈∂pn , w〉

(
2〈νp, w〉+

2dHp

α
− dHp

α

)
=

2

αdρ
〈∂pn ,νq〉〈∂pn , w〉

(
αd〈νp, w〉+

d2Hp

2

)
=

2Hp

α2ρ2
〈∂pn , w〉2Z .

Since the coefficient of Z is a smooth function which is bounded on (M ×M) \
{p = q}, the maximum principle implies that Z remains nonnegative if initially
nonnegative (Z is zero on the diagonal {p = q}). �

Remark 9.4 (Andrews [And12, Remark]). We made no use of the sign assumption
on α, so the result also holds for negative α. This proves “exterior noncollapsing”,
ie the hypersurface remains outside the ball of radius |α|/Hp which touches the
tangent plane at p on the exterior.

10. Convexity estimates

We follow the lines of [HK17]. In this chapter, we will also work with the evolv-
ing family {Ωt}t∈I where ∂Ωt = Mt. We will also consider families of possibly
noncompact closed domains {Ωt ⊂ U}t∈I in an open set U ⊂ Rn+1. For the mean
curvature flow, time scales like distance squared.

Definition 10.1 (α-Andrews condition). A smooth mean curvature flow M is
α-Andrews if every time slice is α-noncollapsed.

Remark 10.2. By Theorem 9.3, if the initial set M0 is compact and α-Andrews,
then so is the whole flow M.

Theorem 10.3 (Half-space convergence, Haslhofer–Kleiner [HK17, Theorem 2.1]).
Let T0 ≥ 0 and {Mj} be a sequence of α-Andrews flows such that:

(i) For every r < ∞, the flow Mj is defined in P (0, T0, r) and there exists tj so

that Br(0) ⊂ Ωjtj for j sufficiently large.

(ii) The origin 0 ∈ Rn+1 lies in M j
0 for every j.

(iii) Let K ⊂ {xn+1 < 0} be compact, then K ⊂ Ωj0 for j sufficiently large.
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Then Oj converges smoothly on compact subsets of Rn+1 × (−∞, T0] to the static
plane {xn+1 = 0} × (−∞, T0].

Remark 10.4. (1) Assumption (i) can be weakend by: For every r < ∞,
the flow Mj is defined in P (0, T0, r) for j sufficiently large. For a proof,
see [HK17, Appendix D].

(2) Assumption (1) is satisfied for every blowup sequence.
(3) The case tj ≤ T0 − R2 is of course allowed. In fact, it follows from the

assertion of the theorem that tj → −∞.

Proof of Theorem 10.3. We begin by proving convergence to a half-space in a weak
sense. For R ∈ (0,∞) and d ∈ R, let

BdR := BR((−R+ d)en+1)

be the closed ball of radius R tangent to the horizontal hyperplane {xn+1 = d} at
the point den+1. If we evolve ∂BdR under (MCF) and start at time

t0 = −dR
n

+
d2

2n
+ ε ,

for ε > 0, then R(t) =
√
R2 − 2n(t− t0) (see Example 1.1(i)) and ∂BdR(t) has left

the upper half-space {xn+1 > 0} at t = ε. Since 0 ∈ M j
0 for all j, B

d

R is not

contained in Ωj0. Furthermore, the comparison principle, Theorem 1.8, yields that

B
d

R cannot be contained in the interior of Ωjt for any t ∈ [t0, 0]. Let By assumption

(i) and (iii), By condition (iii), for large j we can find dj ≤ d such that B
dj
R has first

interior contact with M j
t at some point xj , where

〈xj , en+1〉 < d , |xj |2 ≤ t0 and lim inf
j→∞

〈xj , en+1〉 ≥ 0 .

Hence the mean curvature satisfies

H(xj , t) ≤
n

R
.

Since M j
t satisfies the α-Andrews condition, there is a closed ball BRj with radius

Rj ≥ αR/n making exterior contact with M j
0 at xj . As d and R are arbitrary, this

implies that for any t1 < 0 and any compact subset V ⊂ {xn+1 > 0}, for large

j the time slice M j
t is disjoint from V for all t ≥ t1. Likewise, for any t2 < 0

and any compact subset W ⊂ {xn+1 < 0}, the time slice M j
t contains W for all

t ∈ [t2, T0] and large j because M j
t2 will contain a ball whose forward evolution

under (MCF) contains W at any time t ∈ [t2, T0]. This means that the sequence of
mean curvature flows {Mj} converges in the pointed Hausdorff topology to a static
plane in Rn+1 × (−∞, T0].

In general, let U ⊂ Rn+1 be an open set and {Kτ ⊂ U}τ≥t is a smooth family
of mean convex domains such that {∂Kτ} foliates U \ int(Kt). Let K ′ ⊃ Kt be
a closed domain that agrees with Kt outside a compact smooth domain V ⊂ U .
Let ν be the vectorfield in U \ int(Kt) defined by the outward unit normals of the
foliation. Since div ν = H ≥ 0 we obtain with the area formula, Theorem A.1,

µn(∂K ′ ∩ V )− µn(∂Kt ∩ V ) =

ˆ t0

t

∂τµ
n(∂Kτ ∩ V ) dτ

=

ˆ t0

t

ˆ
∂Kτ∩V

div ν dµn dτ =

ˆ
(K′\Kt)∩V

H dµn ≥ 0 .

Hence, Kt has the following one-sided minimization property:

|∂Kt ∩ V | ≤ |∂K ′ ∩ V | .
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Now in our situation, one can take as a comparison domain

K ′ = Ωjt ∪
(
Br(x) ∩ {xn+1 ≤ δ}

)
for δ > 0 small. Hence, we get for every ε > 0, every time t ≤ T0, and every ball
Br(x) centered on the hyperplane {xn+1 = 0} that

µn(M j
t ∩Br(x)) ≤ µn(Br(x) ∩ {xn+1 = δ}) + µn(∂Br(x) ∩ {0 ≤ xn+1 ≤ δ})

≤ (1 + ε)ωnr
n

for j large enough. Let (x, t) ∈ P (x0, t0, r). Thenˆ
Mj

t−r2
∩Br(x)

Φ(x,t)(y, t− r2) dµnt−r2

=
1

(4π(t− (t− r2)))n/2

ˆ
Mj

t−r2
∩Br(x)

exp

(
− |x− y|2

4(t− (t− r2))

)
dµnt−r2

≤ µn(M j
t ∩Br(x))

(4πr2)n/2
≤ (1 + ε)ωn

(4π)n/2
=

(1 + ε)

Γ(n+ 1/2)4n/2
< (1 + ε) .

By Thorem 5.10 with r →∞, we have smooth convergence to a plane. �

The next theorem ensures that sequences of α-Andrews flows have subsequences
that converge locally to smooth mean curvature flows provided we normalize the
mean curvature at a single point.

Theorem 10.5 (Curvature estimate, Haslhofer–Kleiner [HK17, Theorem 1.8]). For
all α > 0 there exist ρ = ρ(α) > 0 and Cl = Cl(α) < ∞, l ∈ N ∪ {0}, with the
following property: If M is an α-Andrews flow in a parabolic ball P (x, t, r) centered
at x ∈ Mt with H(x, t) ≤ 1/r, then M is smooth in the parabolic ball P (x, t, ρr)
and

sup
P (x,t,ρr)

∣∣∇lA∣∣ ≤ Cl
rl+1

.

Proof. We will first show that there exists a ρ′ > 0 such that the estimate holds
for l = 0 with C0 = 1/ρ′. Suppose this does not hold. Then there are sequences of
α-Andrews flows {Mj}j∈N, points {pj ∈Mtj}j∈N and scales {rj}j∈N such thatMj

is defined in P (xj , tj , rj), some time slice contains Brj (xj) and H(xj , tj) ≤ 1/rj ,
but

sup
P (xj ,tj ,rj/j)

∣∣∇lA∣∣ ≥ j

rj

for every j ∈ N. After parabolically rescaling according to

(x, t) 7→

(
j

rj
(x− xj),

j2

r2
j

(t− tj)

)
and applying an isometry, we obtain a new sequence {M̂j} of α-Andrews flows such
that:

(a) M̂j is defined in P (0, 0, j) and some time slice contains Bj(0).

(b) 0 ∈ M̂ j
0 and the outward unit normal of M̂ j

0 at (0, 0) is en+1.
(c) HM̂j

0
(0, 0) ≤ 1/j → 0 as j →∞.

(d) supP (0,0,1) |A| ≥ 1.

By (a), (b), (c) and the α-Andrews condition, {M̂j} satisfies assumptions (i),
(ii) and (iii) of Theorem 10.3, and hence it converges smoothly on compact sub-
sets of spacetime to a static half-space; this contradicts (d). Finally, by Ecker–
Huisken [EH91], see also [Eck04, Propositions 3.21 and 3.22], we get uniform bounds
on all scale-invariant derivatives of A in P (x, t, ρ′r/2). By setting ρ = ρ′/2 the claim
follows. �
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Corollary 10.6 (Huisken–Sinestrari [HS09, Theorem 1.6], see also [HK17, Corol-
lary 2.6]). Let M be a mean convex flow where the initial time slice is compact.
Then

|∇A| ≤ CH2

for a constant C <∞ depending only on the initial time slice.

Proposition 10.7 (White, [Whi03, Proposition A.4]). Let M be mean convex. If
κ1/H attains a minimum value γ at (p, b), then κ1/H is a nonnegative constant in
a spacetime neighborhood of (p, b).

Proof. Let v = vi∂i be a time-parallel vectorfield, that is

∂tv
i = −1

2
gij(∂tgjk)vk = Hgijhjkv

k = Hhikv
k .

Since ∂t(gijv
ivj) = 0, the length of v is constant in time. Then

∂t(A(v, v)) = ∂t(hijv
ivj) = (∂thij)v

ivj + 2hij(∂tv
i)vj

= (∆hij + |A|2hij − 2Hhki hjk)vivj − 2hijHh
i
lv
lvj

= ((∆ + |A|2)hij)v
ivj

and

∂t(Hg(v, v)) = (∂tH)g(v, v) = (∆H + |A|2H)g(v, v)

= ((∆ + |A|2)(Hg))(v, v) .

Define the tensor m := A−γHg, which is positive semidefinite (by choice of γ) and
satisfies

∂t(m(v, v)) = (∆m)(v, v) + |A|2m(v, v) ≥ (∆m)(v, v) .

Note that the first eigenvalue λ = κ1 − γH of m is everywhere nonnegative and
is 0 at (p, b). Thus by Theorem D.8, λ is identically 0. Fix a time t. Then Mn

is locally a metric product N1 × N2. Let v1 and vn be unit eigenvectors of A
(at some given point) with eigenvalues κ1 and κn, respectively, and assume that
κ1 ≤ 0. Then κn > 0 since H > 0. Thus v1 and vn will be horizontal and
vertical, respectively, with respect to the product structure N1 × N2. Moreover,
by Theorem D.8, 〈v1,∇wvn〉 = 0 for every vector field w. The sectional curvature
determined by v1 and vn is given by

κ1κn = K(v1, vn) =
〈R(v1, vn)vn, v1〉

g(v1, v1)g(vn, vn)− g(v1, vn)2

=
〈
∇v1∇vnvn −∇vn∇v1vn −∇[v1,vn]vn, v1

〉
= 0 .

Since κn is positive, κ1 must vanish. �

The next theorem says that a boundary point (x, t) in an α-Andrews flow has
almost positive definite second fundamental form as long as the flow has had a
chance to evolve over a portion of spacetime that is large compared with the scale
given by H(x, t).

Theorem 10.8 (Convexity estimate, Haslhofer–Kleiner [HK17, Theorem 1.9]). For
all α, ε > 0 there exists η = η(ε, α) <∞ such that if M is an α-Andrews flow in a
parabolic ball P (x, t, ηr) centered at x ∈Mt with H(x, t) ≤ 1/r, then

κ1(x, t) ≥ −ε
r
.

Proof. Fix α > 0 and let rout(x, t) be the radius of the ball touching Mt at x from
the outside. The α-Andrews condition implies

α

rout(x, t)
= H(x, t) ≤ 1

r
.
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Hence

κ1(x, t) ≥ − 1

rout(x, t)
= −H(x, t)

α
≥ − 1

αr
,

so that the assertion holds for ε = 1/α. Let ε0 ≤ 1/α be the infimum of the ε’s
for which it holds, and suppose ε0 > 0. It follows that there is a sequence {Mj} of
α-Andrews flows, where for all j,

(0, 0) ∈Mj , H(0, 0) ≤ 1 and Mj is defined in P (0, 0, j)

but

κ1 → −ε0 for j →∞ .

After passing to a subsequence, {Mj} converges smoothly to a mean curvature
flow M∞ in the parabolic ball P (0, 0, ρ), where ρ = ρ(α) is the quantity from
Theorem 10.5. Then for M∞ we have κ1(0, 0) = −ε0 and thus H(0, 0) = 1. By
continuity, H > 1/2 in P (0, 0, r) for some r ∈ (0, ρ). Furthermore, we have κ1/H ≥
−ε0 everywhere in P (0, 0, r). This is because every (x, t) ∈ M∞ ∩ P (0, 0, r) is a
limit of a sequence {(xj , tj) ∈Mj} and for every ε > ε0, if η = η(ε, α), then Mj is
defined in P (xj , tj , η/H(xj , tj)) for large j, which implies that the ratio κ1/H(xj , tj)
is bounded below by−ε. Thus, in the parabolic ball P (0, 0, r), the ratio κ1/H attains
a negative minimum ε0 at (0, 0). This contradicts Proposition 10.7. �

As an immediate consequence of Theorem 10.8, we obtain the original versions
of the convexity estimate:

Corollary 10.9 (Huisken–Sinestrari [HS99a, Theorem 1.4], see also [HK17, Corol-
lary 2.10]). Let M be a smooth mean convex flow, where the initial time slice is
compact. Then for all ε > 0 there is an H0 < ∞ such that if H(x, t) ≥ H0 then
κ1/H(x, t) ≥ −ε.

Proposition 10.10 (Huisken–Sinestrari, [HS99b, Theorem 4.1]). If M0 has non-
negative mean curvature, then any limiting flow of a type-II singularity has convex
surfaces M∞τ , τ ∈ R.. Furthermore, either M∞τ is a strictly convex translating
soliton or (up to rigid motion) M∞τ = Rn−k × Nτ , where Nτ is a k-dimensional
strictly convex translating soliton in Rk+1.

Proof. We follow the lines of [Man11, Remark 2.5.6 and Proposition 4.2.7]. Around
a singularity, we can send ε → 0 in Corollary 10.9. This yields the convexity of
the limit flow. For the splitting, we observe that the Weingarten operator satisfies
hij � 0 on (M∞τ )τ∈R and

∂τh
i
j = ∆hij + |A|2hij .

Let τ ∈ R. By the strong maximum priciple for 2-tensors, Theorem D.7, there
exists δ(τ) > 0 so that

rankS(τ) = rankA(τ) =: m(τ) ∈ N

on (τ, τ + δ) and

m(τ2) = inf
M∞τ2

rankA ≥ sup
M∞τ1

rankA = m(τ1)

for τ2 > τ1. Hence m(τ) is nondecreasing and there exists τ0 ∈ R, so that the global
minimum

m := min
τ∈R

m(τ)

is attained at some point of M∞τ0 , that is,

m(τ) = m

for all τ ≤ τ0. Assume that m < n, then

kerAx(τ) ⊂ TxM∞τ
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is (n−m)-dimensional at every point x ∈M∞τ . Let v ∈ kerAx and γ be a geodesic
in M∞τ starting at x in direction of v. Then

∇Rn+1

γ̇ γ̇ = ∇Mγ̇ γ̇ +A(γ̇, γ̇)ν = 0

so that γ remains always in kerA and is also a geodesic in Rn+1. Hence, for every
τ ≤ τ0 the hypersurface M∞τ contains an (n − m)-dimensional affine subspace of
Rn+1. By Theorem D.7, kerA(τ) is invariant by parallel transport and time for all
τ ≤ τ0, so that is the same affine subspace for all τ ≤ τ0. Thus,

M∞τ = kerA(τ)×Nτ
splits as a product of an (n−m)-dimensional flat part and a family of either strictly
convex, m-dimensional hypersurfaces Nτ ⊂ Rm+1 evolving by (MCF). Since A is
bounded on (M∞τ )τ∈R, the flow is unique (see Remark 1.7) and the above holds also
for every τ > τ0.

To show that Nτ is a translating solution, by Theorem 7.3, H and |A| are com-
parable quantities, that is, there exists a time-independent constant ε so that

ε|A| ≤ H ≤
√
n|A|

for t ∈ [δ, T ). Hence, we can modify the type-II rescaling (see Definition 6.1) by
replacing |A|2 with H2 and get the same estimates on the second fundamental form
and its covariant derivatives. We then still get an eternal smooth limit flow, com-
plete with bounded curvature and its covariant derivatives, with the only difference
that this time it is the mean curvature H which gets a global maximum equal to
one at time zero. Now Theorem 8.8 yields that M is translating. �

11. Cylindrical estimates

The cylindrical estimate says, roughly speaking, that near a boundary point in
a uniformly k-convex flow, either the flow is uniformly (k − 1)-convex or it is close
to a shrinking round (k − 1)-cylinder Rk−1 × Sn−k provided the flow exists in a
subset of backward spacetime that is large compared to the scale given by the mean
curvature. To state this precisely, we say that an α-Andrews flow is ε-close to a
shrinking round l-cylinder (or cylindrical domain) Rl × Sn+1−l near (x0, t0) if after
applying the parabolic rescaling

(x, t) 7→ (λ(x− x0), λ2(t− t0)) ,

where λ = H(x0, t0), and a rotation it becomes ε-close in the Cb1/εc-norm on
P (0, 0, 1/ε) to the standard shrinking l-cylinder with H(0, 0) = 1. See Huisken and
Sinestrari [HS09, Theorem 1.5].

Theorem 11.1 (Cylindrical estimate, Haslhofer–Kleiner [HK17, Theorem 1.15]).
Let α, β, ε > 0. Let M be an α-Andrews flow that is uniformly k-convex in the
sense that κ1 + · · · + κk ≥ βH. Let x ∈ Mt. Then there exists δ = δ(ε, α, β) > 0
such that, if M is defined in P (x, t, (δH(x, t))−1) and

κ1 + · · ·+ κk−1

H
(x, t) < δ

then M is ε-close to a shrinking round (k − 1)-cylinder Rk−1 × Sn−k near (x, t).

Appendix A. Hypersurfaces in Rn+1

A topological space is called Hausdorff space if for any two distinct points there
exists a neighbourhood of each which is disjoint from the neighbourhood of the
other. A topological space Mn is called locally Euclidean of dimension n, if Mn

can be covered with open sets where every set is homeomorphic to an open subset
of Rn. A pair (U,ϕ), where U ⊂ Mn is open and ϕ : U → ϕ(U) ⊂ Rn is a
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homeomorphism, is called chard of Mn. A collection A of chards is called atlas of
Mn if

Mn ⊂
⋃

(U,ϕ)∈A

U .

Two chards (U,ϕ) and (V, ψ) are called Ck-compatible, k ≥ 1, if

ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V )

is a Ck-diffeomorphism. An atlas is called of class Ck, if each of its chards are
Ck-compatible. If A is a Ck-atlas, there exists exactly one maximal Ck-atlas A0

with A ⊂ A0; it contains all chards which are Ck compatible with the chards of
A. A differentiable (Ck-)structure on Mn is a maximal Ck-atlas on Mn. A lo-
cal Euclidean Hausdorff space with a differentiable structure is called differentiable
manifold.

Let Nn+m be a differentiable manifold. A subset Mn ⊂ Nn+m, n,m ≥ 1, is
called n-dimensional Ck-submanifold of Nn+m if for every x ∈ Mn there exists an
open neighbourhood U ⊂ Nn+m and a Ck diffeomorphism ϕ : U → ϕ(U) ⊂ Rn+m

with

ϕ(U ∩M) = ϕ(U) ∩ (Rn × {0Rm}) .
Such an Mn owns a Ck-atlas, that is

A := {(U ∩M,ϕ|U∩M ) | where (U,ϕ) as above} .

Then, Mn is locally Euclidean of dimension m and

(ψ|V ∩M ) ◦ (ϕ|U∩M )−1 = ψ ◦ ϕ−1|(Rn×{0})∩ϕ(U∩V ) ∈ Ck

for two diffeomorphisms ψ and ϕ.

A topological manifold with boundary is a Hausdorff space in which every point
has a neighborhood homeomorphic to an open subset of the Euclidean half-space
Rn+ = {(x1, . . . , xn) ∈ Rn |xn ≥ 0}. The boundary ∂Mn of Mn is the set of all
points p ∈Mn such that (ϕ(p))n = 0 for all chards (U,ϕ) of Mn. If Mn is a mani-
fold with boundary, then the interior intMn = Mn \ ∂Mn is a manifold (without
boundary) of dimension n and boundary ∂Mn is a manifold (without boundary) of
dimension n− 1.

LetMn be an abstract, smooth, compact, n-dimensional manifold without bound-
ary and X a smooth immersion (rankDX ≡ n) with

X : Mn → Rn+m .

We call M := X(Mn) a hypersurface in Rn+m. For all p ∈ Mn and v, w ∈ TpMn,
the embedding X induces an isomorphism

dXp : TpM
n → TX(p)M ,

and the first fundamental form or metric gp : TpM
n × TpMn → R with

gp(v, w) := 〈dXp(v), dXp(w)〉Rn+m .

Let (Ui, ϕi)i∈I be an atlas of Mn and

∂i =
∂

∂pi
= dϕ−1(ei) ∈ TMn

then the matrix entries of the metric are

gij = g(∂i, ∂j) = 〈dX(∂i), dX(∂j)〉Rn+m = 〈∂iX, ∂jX〉Rn+m = δαβ∂iX
α∂jX

β
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for 1 ≤ α, β ≤ n+m. We define by (gij)ij the coordinate dependent inverse of the
matrix (gij)ij and the measure

dµn =
√

det(gij) dp .

Observe that

∂kgij = 〈∂k∂iX, ∂jX〉+ 〈∂iX, ∂k∂jX〉
and

∂kg
ij = −gpigqj∂kgpq .

The corresponding Levi–Cevita connection on Mn is given by

∇vw = dX−1
((
DdX(v)dX(w)

)>)
.

Here D is the standard connection in Rn+m, and > denotes the tangential compo-
nent with respect to M , that is the orthogonal projection onto dX(p)(TpM

n) =
TX(p)M . The connection can be evaluated in coordinates in terms of the Christoffel

symbols Γkij defined by

∇∂i∂j = Γkij∂k ,

where Γkij is explicitly given by We define the Christoffel symbols by

Γkij := gkl〈∂i∂jX, ∂lX〉 .

Here and in the following, we sum over repeated indices. Then,

Γkij∂kX = 〈∂i∂jX, ∂lX〉∂lX .

At a fixed point, we can choose a coordinate system such that Γkij = 0. We calculate

0 = ∂kδ
i
j = ∂k(gilgjl) = gil∂kgjl + gjl∂kg

il ,

so that

∂kg
ij = −gilgjm∂kglm = −gilgjm∂k〈∂lX, ∂mX〉

= −gilgjm(〈∂k∂lX, ∂mX〉+ 〈∂lX, ∂k∂mX〉) = −gilΓjkl − g
jmΓikm .

Being in a Levi–Cevita connection the Lie bracket [ · , · ] is given by

[v, w] = ∇vw −∇wv =
(
v
(
µk
)
− w

(
λk
))
∂k .

The tangential gradient of a function f ∈ C1(M) is given by

∇Mf = gij∂if∂j .

The tangential divergence divM : TpM
n → R is given by

divM v = gij〈∂iv, ∂jX〉Rn+m .

For the embedding vector X, we therefore have

divM X = gij〈∂iX, ∂jX〉Rn+m = gijgij = n .

For ω = df = ∂f
∂pi

dpi, we obtain the Hessian of the function f

(HessM f)(v, w) :=
(
∇2f

)
(v, w) ,

or in coordinates

∇i∇jf = (HessM f)(∂i, ∂j) = ∂i∂jf − Γkij∂kf .

The Laplace–Beltrami operator ∆M : C2(Mn)→ C0(Mn) is defined as

∆Mf :=
1√

det gkl
∂j

(√
det gkl g

ij∂jf
)

= divM (∇Mf) = gij∇i∇jf .
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We define the second fundamental form Ap : TpM
n × TpMn →

(
TX(p)M

)⊥
by

Ap(v, w) := −
m∑
k=1

〈
DdXp(v)dXp(w),νk(p)

〉
νk(p)

=

m∑
k=1

〈
dXp(w), DdXp(v)νk(p)

〉
νk(p) ,

where {νk}1≤k≤m is an orthonormal frame for (TM)⊥. In coordinates {pi}1≤i≤n,

Aij := Ap(∂i, ∂j) =

m∑
k=1

〈∂iX, ∂jνk〉νk .

The mean curvature vector H : M → (TM)⊥ is the trace of the second fundamental
form

H := −gijAij = −gij
m∑
k=1

〈∂iX, ∂jνk〉νk = −
m∑
k=1

div(νk)νk .

We calculate that

∆MX = gij
(
∂i∂jX − Γkij∂kX

)
= gij

m∑
k=1

〈∂i∂jX,νk〉νk

= −gij
m∑
k=1

〈∂iX, ∂jνk〉νk = H .

For a submanifold Σ of M , the mean curvature vector is given by

HΣ = −
m∑
k=1

divΣ(νk)νk − divΣ(νΣ)νΣ ,

where νΣ is the unit co-normal of Σ. Since νΣ tangential to M ,

〈HΣ,νΣ〉 = −divΣ νΣ

and on Σ,

∆ΣX = gijΣ
(
∂i∂jX − Γkij∂kX

)
=

m∑
k=1

gijΣ 〈∂i∂jX,νk〉νk + gijΣ 〈∂i∂jX,νΣ〉νΣ = HΣ .

For m = 1,
A(v, w) = A(v, w)ν ,

where ν is the outward pointing unit normal to M and A : TMn × TMn → R is
given by

A(v, w) = −
〈
DdX(v)dX(w),ν

〉
=
〈
dX(w), DdX(v)ν

〉
.

where ν is the outward pointing unit normal to M . In coordinates,

hij := A(∂i, ∂j) = −〈∂i∂jX,ν〉 = 〈∂iX, ∂jν〉 .
Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A, that is

hijξ
i
kξ
j
k = λkgij

for eigenvectors ξk ∈ TM and k = 1, . . . , n. The Weingarten operator S : TMn →
TMn is given by

S(v) := dX−1
(
DdX(v)ν

)
so that

A(v, w) = g(v, S(w)) ,

where in coordinates,
hij := gikhkj
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and the Weingarten equations by

∂iν = hji∂jX .

The norm of the second fundamental form is given by

|A|2 = gikgljhklhij = hijhij ,

and the mean curvature vector is given by

H = −gijhijν = −Hν ,

where we define the mean curvature H of M as the trace of the second fundamental
form with

H = gijhij = divM ν .

The Gauss curvature is given by

K := det(hij) .

We have the Gauss formula

∇i∇jX = ∂i∂jX − Γkij∂kX = −hijν
which as before leads to ∆MX = H. More useful identities are the Codazzi equa-
tions in Rn+1

∇khij −∇jhik = Γlijhlk − Γlikhlj

and Simons’ identity

∆hij = ∇i∇jH +Hhikh
k
j − |A|2hij . (A.1)

We define the Riemannian curvature tensor by

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w .

In coordinates that is

Rklij := ∇iΓkjl −∇jΓkil + ΓkimΓmjl − ΓkjmΓmil .

Moreover, we set
Rklij := gkrRrlij

and define the Ricci tensor by

Rik := Rijklg
jl

and the scalar curvature by
R := Rijg

ij .

The Gauss equation are
Rijkl = hikhjl − hilhjk .

The sectional curvature in direction of two linearly independent vectors v and w is
given by

K(v, w) =
〈R(v, w)w, v〉

g(v, v)g(w,w)− g(v, w)2
.

Theorem A.1 (First variation of the area formula, see [Sim83, p. 51]). Let M ⊂
Rn+1 be a smooth, compact, n-dimensional hypersurface with boundary. Let U ⊂
Rn+1 be a open and bounded such that M ⊂ U . Let φ : U × (−1, 1)→ U be a one-
parameter family of C2;1-diffeomorphisms. Set Mt := φ(M, t) and v(p) := ∂tφ(p, 0).
Then

∂t|t=0µ
n(Mt) =

ˆ
M

divM v dµn .

Theorem A.2 (Divergence theorem, see [Sim83, p. 43], [DHTK10, p. 304], [Eck04,
p. 116]). Let M ⊂ Rn+1 be a smooth, compact, n-dimensional manifold with bound-
ary. Let v be a C1-vectorfield on M . Thenˆ

M

divM v dµn = −
ˆ
M

〈v,HM 〉Rn+1 dµn +

ˆ
∂M

〈v,ν∂M 〉Rn+1 dµn−1 .



MEAN CURVATURE FLOW 55

Theorem A.3 (Rademacher’s theorem, see [Fed69, Theorem 3.1.6]). Let U ⊂ Rn
be open and f : U → Rm be Lipschitz continuous. Then f is differentiable almost
everywhere in U .

Lemma A.4 (Fatou’s lemma, [AE06, Theorem 3.7]). Let (Ω, σ, dµ) be a measure
space and let (fi : Ω→ [0,∞))i∈N be a sequence of non-negative integrable functions
such that lim infi→∞

´
Ω
fi dµ <∞. Then
ˆ

Ω

lim inf
i→∞

fi dµ ≤ lim inf
i→∞

ˆ
Ω

fi dµ .

Appendix B. Frobenius’ theorem

Let Mn be a smooth manifold and v a smooth vector field on Mn. The integral
curve of v is a curve γ : (a, b)→Mn such that

γ̇(t) = v(γ(t))

for all t ∈ (a, b). (The existence of γ is given by Picard–Lindelöf.) If v is non-
vanishing, then its integral curves are connected, immersed 1-dimensional submani-
folds of Mn.

A k-dimensional (tangent) distribution D on Mn is a choice of k-dimensional
linear subspaces Dp ⊂ TpMn at each point p ∈Mn, where

D =
⊔

p∈Mn

Dp ⊂ TMn .

If D is a k-dimensional distribution, then we can find a vector field v1 such that
v1(p) ∈ Dp for all p in some neighborhood U ⊂ Mn. We can continue (possi-
bly shrinking the neighborhood) until we have vector fields v1, . . . , vk such that
v1(p), . . . , vk(p) form a basis for Dp at each p ∈ U .

An immersed submanifold N ⊂Mn is an integral manifold of the distribution D
if TpN = Dp for all p ∈ N , and D is integrable if each point of Mn there exists an
integral manifold of D.

A distribution D is called involutable if [v, w] ∈ D for all v, w ∈ D.
A parametrization φ : U ⊂ Mn → Rn is flat for D if φ(U) ⊂ Rn is a product of

connected open sets in Rk × Rn−k and for each p ∈ U , Dp is spanned by precisely
the first k basis vector fields. A distribution D is completely integrable if there exists
a flat parametrization for D in a neighborhood of every point of Mn.

Theorem B.1 (Frobenius’ theorem). Let D be a distribution on a smooth manifold
Mn. Then, D is completely integrable if and only if D is involutable.

A k-dimensional foliation F on Mn is a collection of disjoint, connected, im-
mersed k-dimensional submanifolds N of Mn (the leaves of the foliation) such that

(i) the union of the leaves is all of Mn, i.e., Mn =
⊔
N∈F N , and

(ii) there is a parametrization φ around each p ∈ U ⊂ Mn such that φ(U) is
a product of connected open sets in Rk × Rn−k and each leaf N intersects
U in the empty set or a countable union of k-dimensional slices of the form
xk+1 = ck+1, . . . , xm = cm.

Theorem B.2 (Alternate Frobenius). If D is an involutive distribution on Mn,
then the collection of all maximal connected integral manifolds N of D forms a
foliation of Mn.

Appendix C. Sard’s theorem

Section copied from [Sch05, Section 3]. See also [BJ73].
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Definition C.1. Let f : M → N differentiable. A point p ∈ M is called regular,
if the differential of f in p is surjektiv. A point q ∈ N is called regular value, if
f−1(q) consists of regular points. Non-regular points or values are called singular
or critical.

We want to prove the following theorem.

Theorem C.2 (Sard’s theorem). Let Mm and Nn be differentiable manifolds with
a countable basis of their topology. The critical set S of a Ck function f : M → N
consists of those points at which the differential df : TM → TN has rank less than
n as a linear transformation. If k ≥ max{n −m + 1, 1}, then the image of S has
Lebesgue measure zero as a subset of N .

Corollary C.3. Let Mm be a differentiable manifold and f : Mm → Rn a diffen-
rentiable. Then f−1(x) ⊂Mm is a differentiable submanifold of co-dimension n for
almost every x ∈ Rn.

Remark C.4. The set f−1(x) can be empty. Sard’s theorem also holds for maps
f : Rn → Rp, f ∈ Ck with k > max{n − p, 0} and manifolds with according
dimensions.

Definition C.5. A subset C ⊂ Rn is of measure zero, if for every ε > 0 there exists
a sequence (Wi)i∈N of cubes in Rn with

C ⊂
⋃
i∈N

Wi and
∑
i∈N
|Wi| < ε .

Remark C.6. (i) The countable set of zero sets is again a zero set.
(ii) One obtains an equivalent definition for open oder closed cubes or balls.

Lemma C.7. Let U ⊂ Rm be open and C ⊂ U of measure zero. Let f : U → Rm
be Lipschitz. Then f(C) has measure zero.

Proof. Exercise. �

Definition C.8. A subset C of a differentiable manifold has measure zero, if for
every chard h : U → U ′ ⊂ Rm the set h(C ∩ U) ⊂ Rm is of measure zero.

Remark C.9. The assumption of differentiability is important here, since zero sets
are not necessarily maintained under homeomorphisms. Since a manifold owns a
countable basis of the topologie, there exists an atlas with countably many chards.
It is sufficient to apply the definition for such chards. Well-definedness follows, since
zero sets are maintained under differentiable chard changes and countable unions.

Lemma C.10. An open covering of the interval [0, 1] by subintervals contains a

countable cover [0, 1] =
⋃k
j=1 Ij with

∑k
j=1 |Ij | ≤ 2.

Proof. Due to the compactness, there exists a finite subcover. Choose one where
no interval can be left out without loosing the covering property. Let the intervals
Ij , j = 1, . . . , k be numbered so that with Ij = (aj , bj) always holds aj < aj+1,
j = 1, . . . , k − 1. Minimality and covering property imply ai < ai+1 < bi < ai+2.
So that ∑

i

(bi − ai) =
∑
i

(ai+1 − ai) +
∑
i

(bi − ai+1)

<
∑
i

(ai+1 − ai) +
∑
i

(ai+1 − ai+1) ≤ 2 ,

where we used that we have telecope sums in the end. �

Theorem C.11 (Fubini). Let Rn−1
t := {x ∈ Rn |xn = t} ⊂ Rn. Let C ⊂ Rn be

compact and C: = C∩Rn−1
t be of measure zero in Rn−1

t
∼= Rn−1 for all t ∈ R. Then

C is of measure zero in Rn.
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Proof. Since the property of being of measure zero is maintained under countable
unions, we can assume that C ⊂ Rn−1 × [0, 1]. For t ∈ [0, 1], Ct is of measure zero
in Rn−1×{t}. Let ε > 0 and W i

t be a cover of Ct by open cubes with
∑
i |W i

t | < ε.
Define Wt :=

⋃
iW

i
t identify these with subsets of Rn−1. The function |xn − t| is

for fixed t ∈ [0, 1] on C continuous, vanishes exactly on Ct und attains a positive
minimum in the compact set C \ (Wt × [0, 1]), which we call α. It follows

{x ∈ C : |xn − t| < α} ⊂Wt × Iαt ,
where Iαt = (t− α, t+ α) and

⋃
t I
α
t = [0, 1]. Choose a subcover of [0, 1] among the

intervals Iαt with
∑
ti
|Iαti | ≤ 2. Observe that α = α(ti). It holds

C ⊂
⋃
tj ,i

W i
tj × I

α
tj ,

where i is the index of the cube and we take the union over cuboids. Moreover,∑
tj ,i

|W i
tj × I

α
tj | ≤ 2ε .

Sending ε→ 0 yields the lemma. �

Remark C.12. The requirement that C is compact, can be weakened as follows:
C is a countable union of compact sets, that each suffice the assumptions of the
theorem. This is fulfilled by closed and open sets (which cannot be zero sets), for
images of these set under continuous maps, countable union und finite intersections
of these.

Proof of Theorem C.2. After introducing maps it is sufficient to show: Let U ⊂ Rn
be open, f : U → Rp smooth and D ⊂ U be the set of critical points of f , then
f(D) ⊂ Rp has measure zero.

We prove by induction over n. In case n = 0, Rn is a point. So, f(U) is at most
a point and has measure zero. Assume the claim is true for the case n−1. We proof
the case n. Let Di ⊂ U be the set of all points points, in which the partial derivative
of order ≤ i vanish. We obtain the decreasing sequence of relatively closed sets

D ⊃ D1 ⊃ D2 ⊃ . . . .
We claim that

(i) f(D \D1) is of measure zero,
(ii) f(Di \Di+1) is of measure zero,
(iii) for k big enough, f(Dk) is of measure zero.

We observe, that (iii) is neccessary, since also the points, in which all derivatives
vanish, can be captured. By Remark C.12, all sets occuring in (i)–(iii) can be used.
Moreover, it is sufficient to prove that every point in D \D1 resp. Di \Di+1 resp.
Dk has a neighbourhood V , so that f(V ∩ (D \D1)) resp. f(V ∩ (Di \Di+1)) resp.
f(V ∩Dk) are of measure zero. The claim then follows, since the countable union
of zero set is again a zero set.

Proof of (i): Assume, that p ≥ 2, since for p = 1 we already have D = D1. Let
x0 ∈ D \D1. Since x0 /∈ D1, there exists a partial derivative that is not vanishing
in x0, w.l.o.g. ∂1f 6= 0. Define h : U → Rn by

h : x = (x1, . . . , xn) 7→ (f1(x), x2, . . . , xn) .

Then h is not singular in x0. Hence there exists a neighbourhood V of x0, so that
h : V → h(V ) = V ′ is a diffeomorphism. Define g := f ◦ h−1. In a neighbourhood
of h(x), g is of the form

g : (z1, . . . , zn) 7→ (z1, g2(z), . . . , gn(z)) .
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The hyperplane {z | z1 = t} is (locally) mapped into the hyperplane {y | y1 = t}.
Define

gt : {t} × Rn−1 ∩ V ′ → {t} × Rp−1

als restriction of g. We have

Dgt =

(
1 0
? Dg

)
.

Hence a point in ({t} ×Rn−1)∩ V ′ is critical for g if and only if it is for gt. By the
induction assumption the set of critical values of gt is of measure zero in {t}×Rp−1.
Since g maps entsprechende hyperplanes onto itself, the set of critical values of g
also has a intersection of measure zero with the hyperplane {y | y1 = t}. By Fubini,
Theorem C.11, the critical values of g have measure zero. Since f and g only differ
by an diffeomorphism, also the criticalen values of f have measure zero. This holds
locally, as long as ∂1f 6= 0. This proves (i).

Proof of (ii): We argument similarly as in the proof of (i). Let x0 ∈ Dk \Dk+1.
Then there exist a non-vanishing (k + 1)-st derivative, w.l.o.g.

∂k+1f1

∂x1∂xν1 . . . ∂xνk
(x0) /∈ 0 .

Assume, that this holds in a neighbourhood V of x0. Define w : V → R by

w :=
∂kf1

∂xν1 . . . ∂xνk
(x0) 6= 0 .

It holds w(x) = 0, ∂
∂x1w(x) 6= 0. The map

h : x→ (w(x), x2, . . . , xn)

defines a diffeomorphism h : V → V ′ = h(V ). w and therefore all k-th derivatives
of f1 vanish at most for x = x0. Hence

h(Dk ∩ V ) ⊂ {0} × Rn−1 ⊂ Rn .

Define

g : f ◦ h−1 : V ′ → Rp

and

g0 : {0} × Rn−1 ∩ V ′ → Rp .
By the induction assumption, the set of critical values of g0 has measure zero.
Let x ∈ h(Dk ∩ V ). Then all derivatives of g up to order k vanish there. Since
h(Dk ∩ V ) ⊂ {0} × Rk−1, g0 is defined there and has vanishing derivatives up to
order k. In particular, all first derivatives vanish there as well and thus we are
dealing with critical points of g0. Hence

(g0 ◦ h)(Dk ∩ V ) = (g ◦ h)(Dk ∩ V ) = f(Dk ∩ V )

has measure zero.

Proof of (iii): The set U ist countable union of cubes. Let W ⊂ U be a cube
with side length a ≤ 1 and let k > n − 1. It is sufficient to show, that f(W ∩Dk)
is of measure zero. By Taylor it holds that

f(x+ h) = f(x) +R(x, h)

with

|R(x, h)| ≤ c|h|k+1

for x ∈ Dk ∩W and x + h ∈ W , where the constant c only depends on f and W .
We devide W in rn cubes with side length a/r, r ∈ N. If W1 is a cube of this



MEAN CURVATURE FLOW 59

partitioning, which contains a point x ∈ Dk, then every other point in W1 can be
described as x+ h with |h| ≤

√
na/r. Hence with Taylor

|f(x+ h)− f(x)| ≤ c
(√

na

r

)k+1

.

So that f(W1) is contained in a cube with side length

c(n)

(√
na

r

)k+1

.

There are at most rn such cubes with points in Dk. The summed up volumes of
the images of these cubes in Rp are at most

c(n)p
(√

na

r

)p(k+1)

rn = crn−p(k+1) .

Since n− p(k + 1) < 0, this will get arbitrary small for r →∞. �

Corollary C.13 (Brown). Let M and N be (finite dimensional) manifolds. Let
f : M → N be a differentiable (C∞-)maps. Then all the regular values of f lay
dense in N .

We want to derive Brouwer’s fixed point theorem from Sard’s theorem.

Definition C.14. Let A ⊂ B. A retraction is a continuous map f : B → A, so
that f |A = id, that is, f(x) = x for all x ∈ A.

Theorem C.15. There exists no retraction of B1(0) ⊂ Rn on Sn−1.

Proof. We prove the claim by contradiction. Let f : B1(0)→ Sn−1 be a retraction.

Show at first, that then there also exists a C∞-retraction of B1(0) on Sn−1: We
find a retraction g, that is close to ∂B1(0) of the class C∞, e.g.,

g(x) =

{
f
(
x
|x|

)
for 1

2 ≤ |x| ≤ 1

f(2x) for 0 ≤ |x| ≤ 1
2 .

Mollification in the interior gives a C∞-retraction. Hence we may assume that
f ∈ C∞

(
B1(0),Sn−1

)
. By Corollary C.13 there exists a regular value y ∈ Sn−1 of

f . Hence the compact set f−1(y) is a one-dimensional submanifold (first in B1(0),
but since we can mollify f , also up to the boundary, since f is after construction
constant on radial line segments close to Sn−1). Hence f−1(y) is a one-dimensional

manifold with boundary in B1(0), whose boundary is a subset of Sn−1 = ∂B1. It
holds that y ∈ f−1(y), since f is a retraction. Let V be the component of f−1(y)
that contains y. Then V is a one-dimensional compact connected manifold and thus
diffeomorph to a closed interval. Then y is the one boundary point of V . Let z be
the other, which as well lays on ∂B1(0). It follows that z = f(z) in contradiction
to y, z ∈ f−1(y). �

Theorem C.16 (Brouwer’s fixed point theorem). Let f : B1(0) → B1(0) be con-

tinuous. Then f has one fixed point, that is, there exists x ∈ B1(0) with f(x) = x.

Proof. If f(x) 6= x for all x ∈ B1(0), we define g(x) to be the intersection of a line

with Sn−1 beginning in f(x) through x . As constructed g is a retraction of B1(0)
on Sn−1. �
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Appendix D. Maximum principles

Theorem D.1 (Strong elliptic maximum principle). Let M be closed and f : M →
R satisfy

−∆Mf + bi∇Mi f + cf ≤ 0

for some smooth funtions bi and c ≤ 0. If f ≤ 0, but f /≡ 0, then f < 0.

Proof. For a proof see [Eva02, §6.4, Theorem 4] or [Sch17b, Theorem 5.5] for Mn =
Rn. �

Let Mn be a smooth n-dimensional manifold with boundary whose closure is
compact. Let X : M̄n × [0, T )→ Rn+m be a family of smooth embeddings and set
Mt := X(Mn, t). For f ∈ C2;1(Mn × [0, T )), we define the parabolic operator

L(f) := ∂tf − aij∇i∇jf − bi∇if − cf ,
where aij , bi, c ∈ L∞ may depend on p, t, (gkl)kl, f , ∇f , and ∇2f , and where (aij)ij
is positive semi-definite, that is,

λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2

for all ξ ∈ Rn. For R > 0, p0 ∈Mn and t0 ∈ [0, T ), define the spatial neighbourhood

UR(p0, t0) := X−1
(
BR(X(p0, t0)) ∩Mt0

)
=
{
p ∈Mn

∣∣ |X(p, t0)−X(p0, t0)| < R
}
,

the parabolic neighbourhood

QR(p0, t0) :=
{

(p, t) ∈Mn ×
(
t0 −R2, t0

] ∣∣ |X(p, t)−X(p0, t)| < R
}

=
⋃

t∈(t0−R2,t0]

(UR(p0, t)× {t})

and, for an open set U ⊂Mn and [t1, t0] ⊂ [0, T ), the parabolic boundary

P(U × [t1, t0]) := (U × {t1}) ∪ (∂U × (t1, t0]) .

Theorem D.2 (Weak parabolic maximum principle). Let U ⊂Mn be open and let
f ∈ C2;1(Q) ∩ C0(PQ) for Q := U × [t1, t0]. Let L(f) ≤ 0 on Q

(i) If c = 0, then supQ f ≤ supPQ f .
(ii) If c ≤ 0 in {(x, t) ∈ Q : f(x, t) > 0}, then supQ f ≤ supPQ max{f, 0}.

(iii) If c ∈ L∞ and supPQ f ≤ 0, then supQ f ≤ 0.

Theorem D.3 (Strong parabolic maximum principle). Let U ⊂ Mn be open and
connected, Q := U × [0, T ), and f ∈ C2;1(Q)∩C0(Q̄). Let L(f) ≤ 0 in Q and there
exists (p0, t0) ∈ Q \ PQ with f(p0, t0) = maxQ̄ f . If

(i) c = 0 or
(ii) c ≤ 0 and f(p0, t0) ≥ 0 or

(iii) c arbitrary and f(p0, t0) = 0,

then then f is constant in U × [0, t0].

D.1. 2-tensors. We follow the lines of [CCG+08, Chapter 12]. Let T > 0 and
(Mn, g(t))t∈[0,T ) a closed manifold with a family of metrics, that depend smoothly
on time. Let m = (mij)1≤i,j≤n be symmetric with mij ∈ C∞(Mn × [0, T )). Let
b = (bij(m, p, t))1≤i,j≤n be symmetric with bij ∈ C1(Mn × [0, T )) and satisfy the
null eigenvector condition, that is, if mijξ

j = 0 for 1 ≤ i ≤ n then also bijξ
iξj ≥ 0.

Let uk ∈ L∞(Mn × [0, T )), 1 ≤ k ≤ n.

Theorem D.4 (Weak parabolic maximum principle for 2-tensors). Let

∂tmij � ∆g(t)mij + uk∇g(t)k mij + bij(mkl, ·)
in Mn × (0, T ) and mij(·, 0) � 0. Then mij(·, t) � 0 for 0 ≤ t < T .
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Proof. See e.g. [Sch17c, Theorem 4.2] �

Theorem D.5 (Strong parabolic maximum principle for 2-tensors I, Hamilton
[Ham86, Lemma 8.2]). Let b be locally Lipschitz in m. Let

∂tmij = ∆g(t)mij + uk∇g(t)k mij + bij(mkl, ·)

in Mn × (0, T ), mij(·, 0) � 0 for all t ∈ [0, T ) and mij(p0, 0) � 0 for p0 ∈ Mn.
Then mij(·, t) � 0 for 0 < t < T .

Proof. We follow the lines of [CCG+08, Theorem 12.47]. Let p ∈Mn and U ⊂Mn

so that p, p0 ∈ U and so that U is a compact manifold with smooth boundary.
Define ϕ1 : U × [0, T )→ R by

ϕ1 ≤ λ1(·, 0) in U

ϕ1 ≡ 0 on ∂U

2ϕ1(p0) ≥ λ1(p0, 0) .

Let C > 0 to be chosen later and let f : U × [0, T )→ R a solution of

∂tf = ∆g(t)f + uk∇g(t)k f − Cf in U × (0, T )

f ≡ 0 on ∂U × [0, T )

f(·, 0) = ϕ1 in U .

Since mij(p0, 0) > 0, we also have ϕ1(p0) > 0. The strong maximum principle
for functions, Theorem D.3, yields that f > 0 in U × (0, T ). The weak maximum
principle, Theorem D.2, yields

f(x, t) ≤ max
p∈U

ϕ1(x) ≤ max
p∈U

λ1(x, 0)

in U × (0, T ). Define the tensor

m̃ij = mij + (εeCt − f)δij ,

where ε > 0. Then

m̃ij � λ1δij + (εeCt − λ1)δij � 0

and

∂tm̃ij = ∂tmij +
(
εCeCt − ∂tf

)
δij

= ∆g(t)(mij − fδij) + uk∇g(t)k (mij − fδij)
+ bij(mkl) + C

(
εeCt + f

)
δij

= ∆g(t)m̃ij + uk∇g(t)k m̃ij + bij(m̃kl)

− (bij(m̃kl)− bij(mkl)) + C
(
εeCt + f

)
δij .

Since bij is Lipschitz in mij ,

bij(m̃kl)− bij(mkl) � Lip(bkl)(m̃ij −mij) = Lip(bkl)(εe
Ct + f)δij .

By choosing C ≥ Lip(bij) and ε such that ε ≤ e−Ct, we obtain

∂tm̃ij � ∆g(t)m̃ij + uk∇g(t)k m̃ij + bij(m̃kl)

+ (C − Lip(bij))
(
εeCt + f

)
δij

� ∆g(t)m̃ij + uk∇g(t)k m̃ij + bij(m̃kl) .

The weak maximum principle, Theorem D.4, implies m̃ij � 0 on U × [0, T ) for

ε ∈ (0, e−Ctt]. Thus mij � (−εeCt + f)δij on U × [0, T ) for ε ∈ (0, e−Ctt]. Letting

ε→ 0 yields mij � fδij � 0 on U × [0, T ). �
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Theorem D.6 (Strong parabolic maximum principle for 2-tensors II). Let

φk(p, t) := inf
{τ1,...,τk} orthonormal

(m(τ1, τ1) + · · ·+m(τk, τk))

= λ1(p, t) + · · ·+ λk(p, t)

where k ∈ {1, . . . , n}. Let b be locally Lipschitz in m. Let

∂tmij = ∆g(t)mij + uk∇g(t)k mij + bij(mkl, ·)
in Mn × (0, T ), φk(·, 0) ≥ 0 in Mn and φk(p0, 0) > 0 for k ∈ {1, . . . , n} and
p0 ∈Mn. Then φk(·, t) > 0 for 0 < t < T .

Proof. We follow the lines of [CCG+08, Theorem 12.49]. Let p ∈Mn and U ⊂Mn

so that p, p0 ∈ U and so that U is a compact manifold with smooth boundary.
Define ϕk : U × [0, T )→ R by

kϕk ≤ φk(·, 0) in U

ϕk ≡ 0 on ∂U

kϕk(p0) ≥ λ1(p0, 0) .

Let C > 0 to be chosen later and let f : U × [0, T )→ R a solution of

∂tf = ∆g(t)f + uk∇g(t)k f − Cf in U × (0, T )

f ≡ 0 on ∂U × [0, T )

f(·, 0) = ϕk in U .

Since φk(p0, 0) > 0, we also have ϕk(p0) > 0. The strong maximum principle for
functions, Theorem D.3, yields that f > 0 in U × (0, T ). The weak maximum
principle, Theorem D.2, yields

f(x, t) ≤ max
p∈U

ϕk(x) ≤ max
p∈U

φk(x, 0)

in U × (0, T ). Define the tensor

m̃ij = mij + (εeCt − f)δij ,

for ε > 0 and

φ̃k(p, t) := inf
{τ1,...,τk} orthonormal

(m̃(τ1, τ1) + · · ·+ m̃(τk, τk))

= φk(x, t) + k(εeCt − f(x, t)) .

We want to show that φ̃k > 0 on U × [0, T ) for ε > 0 small enough. Assume the

opposite. Since φ̃k > 0 in U × {0} and ∂U × [0, T ), there exists a point (p1, t1) ∈
U × [0, T ) with

φ̃k(p1.t1) = 0 and φ̃k(p.t) > 0 for all (p, t) ∈ U × [0, t1) .

Let τ 0
1, . . . τ

0
k ∈ Tp1Mn be orthonormal with

m̃(τ 0
1, τ

0
1) + · · ·+ m̃(τ 0

k, τ
0
k) = 0

in (p1, t1). Extend each τ 0
i in space and time to a lokal vectorfield τ i by parallel

translation of τ 0
i along geodesics starting from p1 with respect to∇g(t1) and constant

in time. Then

∇τ i(p1, t1) = 0 , ∆τ i(p1, t1) = 0 , ∂tτ i(p1, t1) = 0 .

Define in a neighbourhood of (p1, t1)

ψk(p, t) := m̃(p, t)(τ1, τ1) + · · ·+ m̃(p, t)(τk, τk)

where ψk(p1, t1) = 0 and

ψk(p, t) ≥ φ̃k(p, t) ≥ 0
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for all p ∈ U and t ∈ [0, t1]. At (p1, t1), we have

0 ≥ (∂t −∆− ul∇l)ψk

=

k∑
i=1

(∂t −∆− ul∇l)m̃(τ 0
i , τ

0
i )

=

k∑
i=1

b(m̃)(τ 0
i , τ

0
i )−

k∑
i=1

(b(m̃)− b(m)) (τ 0
i , τ

0
i ) + C

(
εeCt + f

)
≥

(
kC −

k∑
i=0

Lip(b)(τ 0
i , τ

0
i )

)(
εeCt + f

)
> 0

if we choose C ≥ Lip(bij) and ε such that ε ≤ e−Ct. This is a contradiction. Hence,

φ̃k > 0 on U × [0, T ) for ε ≤ e−Ct. Thus φk ≥ −k(εeCt − f) on U × [0, T ) for
ε ∈ (0, e−Ctt]. Letting ε→ 0 yields ψk ≥ f > 0 on U × [0, T ). �

Theorem D.7 (Strong parabolic maximum principle for 2-tensors III, Hamil-
ton [Ham86, Section 8]). Let b be locally Lipschitz in m. Let

∂tmij = ∆g(t)mij + uk∇g(t)k mij + bij(mkl, ·)

in Mn × (0, T ) and mij(·, 0) � 0 for all t ∈ [0, T ). Then

(i) If t2 > t1 in [0, T ), then

inf
p∈Mn

rankm(p, t2) ≥ sup
p∈Mn

rankm(p, t1)

and there exists δ > 0 so that rankm(p, t) is constant for all p ∈ Mn and
t ∈ (0, δ).

(ii) (kerm is smooth in space and time). Let (0, δ) be the time interval from (i).
Then, kerm(t) ⊂ TMn is a smooth subspace which depends smoothly on time
for t ∈ (0, δ).

(iii) (kerm is parallel in space and time). Let (0, δ) be the time interval from (i).
Then, kerm(t) is invariant under parallel transport in space and constant in
time for t ∈ (0, δ).

Proof. See [CCG+08, Theorem 12.50]. �

We also need the following two variants of the previous theorems. A vectorfield
v = vi∂i is called time-parallel provided

∂tv
i = −1

2
gij(∂tgjk)vk .

Since ∂t(gijv
ivj) = 0, the length of v is constant in time.

Theorem D.8 (Stong maximum principle for 2-tensors IV, White [Whi03, Propo-
sitions A.2 and A.3]). Let Ω ⊂ Rn be open and connected. Let mij be a smooth
time-dependent symmetric 2-tensorfield such that

∂t(mijv
ivj) ≥ (∆mij)v

ivj

for all time-parallel vectorfields v. Let λ be the smallest eigenvalue of m. If the
minimum value of λ on Ω× (a, b] occurs at (p, b), then λ is constant on Ω× (a, b].
Furthermore, at each time t ∈ (a, b], Ω is locally isometric to a product N1 × N2

of two Riemannian manifolds N1 and N2, where v ⊥ TN2 if and only if v is an
eigenvector of m with eigenvalue λ. Moreover, let v ∈ TN1, w ∈ TN2 and V ∈ TΩ,
then ∇V v ∈ TN1 and ∇V w ∈ TN2.
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Proof. Given a spacetime point x = (p, t), let v = vx be a unit vector such that
m(v, v) = λ. Extend v to a unit vectorfield v(·, t) at time t by parallel translation
along geodesics starting from p. This way of extending v guarantees that

(∆m)(v, v) = ∆(m(v, v)) (D.1)

at (p, t). Now extend v as a time-parallel vectorfield on Ω× (a, b]. Then v is a unit
vectorfield so

λ ≤ m(v, v) , (D.2)

with equality at (p, t). Suppose for the moment that λ is a smooth function on
Ω× (a, b]. Then by (D.1) and (D.2),

∂tλ = ∂t(m(v, v)) ≥ (∆m)(v, v) = ∆(m(v, v)) ≥ ∆λ (D.3)

at the point (p, t). Thus if λ is smooth, then

∂tλ ≥ ∆λ. (D.4)

Even if λ is not smooth, the derivation just given shows that (D.4) holds in a
viscosity sense. (In the nonsmooth case, one should think of ∂tλ as

lim
h→0

inf
h>0

λ(x, t)− λ(x, t− h)

h
.

Then by (D.2), we will still have ∂tλ ≥ ∂t(m(v, v)) at (p, t).) The strict maximum
principle, Theorem D.3, then implies that λ is constant. Now consider the point
(p, t) and the special vectorfield v defined above. Since λ is constant, the first and
last terms in (D.3) vanish. This forces all the terms to vanish, in particular

(∆m)(v, v)(p, t) = 0 .

(The argument for nonsmooth λ goes as follows. The maximum principle for smooth
λ is proved using smooth functions f such that ∂tf < ∆f and then observing that it
is impossible for λ−f to attain a minimum (on certain domains). In the nonsmooth
case, note that if λ−f attained a minimum at a spacetime point x, then for v = vx,
the function f̄ := m(v, v)− f would also have a minimum at the spacetime point x,
which readily gives a contradiction since f̄ is a smooth function with ∂tf̄ > ∆f̄ .)

For the last claim, without loss of generality, we may assume that λ = 0; other-
wise replace m by m − λg. Fix a time t. It suffices to prove the conclusion on an
open dense subset of Ω. Since the nullity (dimension of the nullspace) of m is locally
constant on a dense open subset of Ω, we may assume it is constant throughout Ω.
Now fix some point (p, t). Let {ei} be a g-orthonormal basis at (p, t), and extend
(spatially) by parallel translation along geodesics emanating from p; this guarantees
that ∆T = ∇ei(∇eiT ) for any tensor field T . Now m(v, ·) = 0, so

0 = ∆(m(v, v)) = ∇ei(∇ei(m(v, v))))

= ∇ei((∇eim)(v, v) + 2m(∇eiv, v))

= (∆m)(v, v) + 2(∇eim)(∇eiv, v)

= 2∇ei(m(∇eiv, v))− 2m(∇eiv,∇eiv) = −2m(∇eiv,∇eiv) .

Since m is positive semidefinite, this means ∇eiv is in the nullspace of m at (p, t)
for each i. Thus for any vector V , the vector ∇V v is in the nullspace at (p, t).
Since (p, t) is arbitrary, in fact this holds everywhere. In other words, if v is a null
vectorfield and V is an arbitrary vectorfield, then ∇V v is also a null vectorfield.
By the Frobenius theorem, Theorem B.2, the nullspaces of m form an integrable
distribution. (Note that the leaves of the foliation are totally geodesic.) Now
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suppose V is an arbitrary vectorfield, v is a nullvectorfield, and that w is a vectorfield
everywhere perpendicular to the nullvectors. Then

0 = ∇V 〈w, v〉 = 〈∇V w, v〉+ 〈w,∇V v〉 = 〈∇V w, v〉 .
Thus (again by Frobenius) the orthogonal complements of the nullspaces of m form
an integrable distribution, and the leaves are totally geodesic. Thus we can find a
coordinate system {pi} such that

g =

(
(gij)1≤i,j≤m 0

0 (gαβ)m+1≤α,β≤n

)
.

Since giα = 0, the Christoffel symbol simplify to

Γαij = −1

2
gαβ∂βgij .

Since the horizontal leaves are totally geodesic, Γαij vanishes for all α, which implies

that ∂βgij = 0, so gij does not depend on pβ . Notice this holds for all i, j and β.
Likewise gαβ does not depend on any of the pi. Thus g is a product metric. �
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