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1. MEAN CURVATURE FLOW

Let My € R"*! be a smooth n-dimensional hypersurface without boundary, given
by an immersion Xy : M™ — R**! where M™ is an abstract smooth manifold. We
consider the family of embeddings X : M" x [0,T) — R" ™! with

for all p € M™ and
0 X (p,t) = H(p,t) = —H(p, t)v(p,t) = Anr, X (p, 1) (MCF)

for all (p,t) € M™ x [0,T). We abbreviate M; := X (M",t). In the following, we
will write A := Ay, and V := VMt The parabolic ball with radius 7 > 0 and
center (z,t) € R"™! x R is the product

P(x,t,7) := B(z) x (t —r%,t] c R""' x R.
Given a family of subsets {M;}ic; the spacetime track is the set

M= M, x {t} cR"™ xR.
tel
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2 FRIEDERIKE DITTBERNER

Likewise, given a subset M C R™*! x R, the time ¢ slice of M is
M; = {z ¢ R"" | (a,t) € M}.

Example 1.1 (Shrinking spheres and cylinders). (i) Let M; = Sy (1), then (MCF)
reduces to an ODE for the radius, namely

for t € (—o0,73/2n).

(ii) The shrinking cylinders M; = S, x R"™™ with r(t) = /T8 — 2mt exist for
t € (—o0,r3/2m).

(iii) For n = 1 the so-called grim reaper is given by M; = graph(u;), where u(z,t) =
t —logcosz with x € (—m, 7).

Remark 1.2 (Normal motion and tangential diffecomorphisms). See [Eck04, Re-
mark 2.2(3)]. We will often consider smoothly embedded hypersurfaces M; satisfy-
ing

Q)" = (O, v(2))v(z) = H(z)

for x € M;, where L denotes the projection onto the normal space of M;. This
equation is equivalent to (MCF) up to diffeomorphisms tangent to M;. Indeed, let
X(-,t) : M™ — R with M, = X(M",t) be a family of embeddings satisfying
the equation

(aX(a.0))" = Alg,t) = H(X(0,1))

for ¢ € M™, where L denotes the projection onto the normal space of X(M",t).
Let ¢ = 9(-,t) be a family of diffeomorphisms of M™ satisfying

~ ~ T
VX (6(.0).000(p.1) = — (2K (6(p,0),))

where T denotes projection onto the tangent space of X (M™,t). The local existence

of such a family is guaranteed by the assumptions on X. If we set
X(p,t) = X(¢(p, 1), t)

then M, = X (M™,t) = X(M™,t), and

- - - 1L
8.X(p.1) = 9K (p.t) + VX (6(p,1).)0,0(p,1) = (8K (0.1)) = H(X(p.1)
The previous remark results in the following theorem, see [Sch17a, Theorem 10.6].

Theorem 1.3. Let X : M"™ x [0,T) — R"! be a solution to (MCF), that is
(0:X,v) = —H. Let R € O(n+1) be an orthonormal map and ¢ : M" x[0,T) — M"
smooth. so that ¢(-,t) is a diffeomorphism. Then X (p,t) := RX(¢(p,t),t) evolves
by

(0% (0.0, 2(0.1) = A1),

where H(p,t) = H(¢(p,t),t) for allp e M™ and t € [0,T).
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Lemma 1.4 (Evolution equations). Let (M;)icjo,1) evolve by (MCF). Then,
0rgij = —2Hhyj
09" = 2HRY |
drdpy = —H* duy
oww =VH,
Ohij = V;V;H — HhFhjj,
= Ahy; — 2Hh hjy + | AP hij
Oyhl = AR + |APPR]
OH = AH + H|AP?,
A2 = AA]2 — [VA[2 + 2/AJ*,
O VTA2 < AIVTAP2 — 2|V LA
+C(m,n) Y |VTA|-|[VIA[-|VIA] - [VEA
i+j+k=m
for allt €10,T).
Proof. See e.g. [Sch18, Section 3. O
Corollary 1.5. We have that

Oppy (My) = — | H?dpy .
M,

Moreover, (MCF) is the negative L? gradient flow for the surface area functional.

Proof. For arbitrary normal speeds 0, X = —Fv, we have that 0,g;; = —2Fh;; and

d 1/2 1/2
— | dpi = */ FHdpy > — (/ F2du?> ( szu?)
dt J, M, M, M,

with equality if and only if ' = H. |

Theorem 1.6 (Short time existence). Let My C R"™! be a smooth, compact hy-
persurface given by an immersion Xo : M™ — R, there exists a unique, smooth
solution of (MCF) in some positive time interval.

Proof. See e.g. [Manll, Section 1.5]. O

Remark 1.7. See [Manll, Remark 1.5.4]. To proof existence and uniqueness for
noncompact initial surfaces one needs estimates on the initial hypersurface (like
similarly, on the initial datum in order to deal with the heat equation in all R™)
to have existence in some positive interval of time. One possibility is to assume a
uniform control on the norm of the second fundamental form of the initial hyper-
surface. Ecker and Huisken [EH89] showed that a uniform local Lipschitz condition
on a hypersurface is sufficient to guarantee short time existence.

Theorem 1.8 (Comparison principle). Let X : M™ x [0,7) — R""! and Y :
N™ x [0,T) — R" ! be two hypersurfaces moving by MCF, where M™ is compact.
Then the distance between them is nondecreasing in time.

Proof. We follow the lines of [Manll, Theorem 2.2.1]. The distance between the
two hypersurfaces M; = X(M™,t) and Ny = Y (N™,t) at time ¢, is given by

dt):= inf  |X(p,t)—Y(q,1)|.
(t) peM%}quJ (p,t) = Y(q, )|

This function is locally Lipschitz in time, as the curvature is locally bounded and
the two hypersurfaces move by mean curvature. Hence it is differentiable almost
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everywhere. Assume that t is a differentiability point. Since M™ is compact, d
is actually a minimum. Suppose that d(t) > 0 and let (pt,q;) € M™ x N™ be
points, where d(t) is attained. Differentiating |X (p,t) — Y(q,t)| with respect to
v =01 ® vy € Txps)Ms @ Ty (q,1) Nt yields that

0= X(ptvt) _Y(qtvt)

d(t)
so that T'x (,, 1) M¢ and Ty (4, 1) Ny have to be parallel. Hence, we can write My and N,
locally around X (p¢,t) and Y (q¢, t) as graphs of two functions f, h : Ux(t—e,t+e) —

R, where U C R"™. After rotation, we can assume that span(ey,...,e,) C R"T! is
such a tangent space with

X(pht) = (0, f(O,t)) ) Y(th) = (07 h(07t)) and f(07t) > h(07t) :

,Vle(Pt,t) - VUQY((Jtat)> )

We calculate

Dy fD'fDIf
=—H =Af- 2L 2=
o f M{(VM,€nt1) f 1L DIP
and
D;;hD'hD’h
ath = _HN<VN5677,+1> = Ah — W

The function f — h has a spatial minimum at = = 0 at time ¢. Hence,
Af(0,t) — AR(0,t) >0 and Df(0,t) = Dh(0,t) =0
and so
— (Hu (pe, )y ar (pe: 1) — Hy (e, ) (g, 1), enir) = Af(0,8) — AR(0,2) = 0.

Since
X(ptat) 7Y(qtat) —e

we obtain at (p, g¢) that
9| X (p,t) = Y(q, 1)

- _ <X(pt,t)d(t)Y(qt,t) s Hayr(pe, ) v ar(pe, t) — HN(Qtvt)VN(qt’t)>

= —(eny1, Hy(pe, ) s (pe, t) — Hn (qe, t)vn (g, ) > 0.

This holds for every minimum so that d;d > 0. O

Proposition 1.9 (Preservation of embeddedness). If My is compact and embedded,
then My is embedded for allt € (0,T).
In particular, let

t) = A
m(t) o2 |A(p, s)|
and
q
l(p,q,t) ::/ 17(s)|geyds  for a minimizing geodesic
p
and

Qc(t) = {(p,q) € M" x M"™ [m(t)l(p, q,t) < e}
for e > 0. Then there exists € > 0 so that My is embedded on Q.(t) and

d(p,q,t) > min{d(O), Sin(g)} .

m(t)

d(t) = min
(p,q) E(M™ X M™)\ Qe (2)
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Proof. We follow similar lines to [Manll, Proposition 2.2.7]. If the hypersurface
My is embedded, then M; is embedded for a small positive time, otherwise there
is a sequence (p;, Gi,t;)ien with X(p;,t;) = X(q:,t;) and ¢; — 0. We have for a
subsequence, that p; — p and ¢; — ¢. If p # ¢ then X (p,0) = X (¢,0), which is a
contradiction. If p = ¢, by the smooth existence of the flow, there exists an open
neighbourhood U C M™ of p so that the map X (-,¢)|y is one-to-one for ¢ € [0, ¢),
which is in contradiction. Define the monotone nondecreasing function
m(t) := max A(p, s
()= omax  1A@s)]
and we choose a smooth, monotone nondecreasing function m* : [0,7") — R4 such
that
m(t) <m*(t) < 2mf(t)
for every ¢t € [0,T). Furthermore, define the geodesic intrinsic distance in the
Riemannian manifold (M™, ¢(t))

q
l(p,q,t) = / |7(s)|gtyds  for a minimizing geodesic v
P

and the extrinsic distances

d(paQ7t) = |X(p7t) - X(qvt)‘ :

Consider the following inscribed and outscribed balls

Bil0.0) = By Xl01) = 22
and
Bout(pa t) = Bl/m*(t) (X(p7 t) * l;éféf))>

and the geodesic neighbourhood
Ue(p,t) :={qg € M™ |m*(t)l(p,q,t) < e}
Then there exists e € (0,7/2) so that
X(U:(p,t),t) N Bin(p, t) = X(Us(p,t),t) N Bous(p,t) = 0
Consider the open set
Qc(t) :== {(p.q) € M" x M"™ |m*()l(p, q,t) < &}
and the closed set

S(t) = {(p,q) cM”™x M" |p7é q and X (p,t) = X(q,t)} .
For embedded M,
Q(t)NSt)=10

and 2sin(e)

. sin(e

doq, (t) = it d(p,q,t) 2 — 0

Assume that to € (0,T) is the first time where the flow is no more embedded. Since
QNS =0 and 9Q(ty) is compact,

94 .
min dagq, (t) = sin(e) > sin(e) =:¢>0.
te[0,0] m*(to) — m*(t)
Furthermore, set
d(t) == min d(p,q,t).

(P,@)€(M™ X M™)\Qe ()
Assume that there exists a time ¢; € (0,%9) so that d(¢1) < min{d(0),c} for the
first time. Then d(¢;) is attained at points (p1,q1) € (M™ x M™) \ 2. A geometric
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argument analogous to the one of the comparison principle, Theorem 1.8, shows
that 0;d(t) > 0. Hence
d(t) > min{d(0),c} >0

on [0, %o], which is a contradiction. O

Theorem 1.10 (Huisken, [Hui84, Corollary 3.6(ii)]). Let (M;)icpo,r) be a family
of closed hypersurfaces moving by (MCF). Assume My = Xo(M) closed and mean
convex, i.e. H>0. Then H >0 for all t € (0,T).

Proof. See [Sch17d, Theorem 2.1.2]. That H > 0 for ¢ > 0 follows from the evolution
equation of H and the parabolic maximum principle, Theorem D.3. Assume that
H(po,to) = 0 for some ¢y > 0. The strong maximum principle then implies that
H = 0 for all (p,t) and 0 < t < ty. But this is impossible since any closed
hypersurface in R™*! has points where A; > 0. O

2. HOMOTHETICALLY SHRINKING SOLUTIONS

Definition 2.1 (Homothetically shrinking solutions, Brakke [Bra78, Appendix C]).
Let A : [to,T] — Ry be smooth and decreasing, A(tgp) = 1 and A\(T) = 0. Let
xo € R"L. A homothetically shrinking solution X : M™ x [to, T) — R"*! to (MCF)
satisfies

M; = )\(t)(MO — $0) + x9
for all ¢t € [tp,T). This describes solutions of (MCF) which move by scaling about
Zo-

Remark 2.2. See [Eck04, Examples 2.3(4)]. We can make the separation of vari-
ables ansatz

for a family of embeddings X : M™ x [to,T) — Rt with M, = X(M™, t) satisfying
the evolution equation

(th((q,t))L = <8tX(Q7t)’V(97t)> =H(q,?)

for ¢ € M"™. In Remark 1.2, we saw that there are tangential diffeomorphisms
¢r: M™ — M"™, t € [to, T), with

X(q.t) = X (o7 '(q).t)

for ¢ € M™, where the embeddings X (-,t) : M™ — R""! satisfy (MCF). This
says that, up to tangential diffeomorphisms, the radial or homothetic motion of the
hypersurfaces M; (described by X ) is equivalent to their normal motion along the
mean curvature vector (described by X). For the shrinking sphere solution these
two agree, but for the shrinking cylinder they differ. Since the mean curvature of
the embeddings scales with factor 1/A(t) we deduce

QA1) (f((q,to))L _ (a,j((q,t))L — Fi(q,t) = ﬁﬁ(q,to)

for ¢ € M™. From this we infer that
a = 2\(1)ON(t) = O N2 (t)
is independent of t. We therefore obtain under the assumption A(tp) = 1 that
A(t) = I+ alt —to)

for all ¢ satisfying ¢ > to — 1/«. Hence

H(p, ) = a<X(p727;)2,(1;)(p7 t))
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for (p,t) € M"™x(—o00,T), where T' = to—1/c. This describes expanding homothetic
solutions about 0 for o > 0 and contracting homothetic solutions about 0 for o < 0.
Let us concentrate on a < 0. If we set A(T") = 0 for T' > ¢y, which requires the
hypersurface to disappear at time T, then o« = —1/(T — to) and thus

A) = ;F_—tto
and
Hip.t) = (X(p 1), v(p, 1))

2T — 1)
for (p,t) € M™ x (—o0,T).
Lemma 2.3. Let (My)ie(—oo0,0) be an ancient solution of MCF. Then
(z,v(x))
H = ——
for allx € M; and t <0 if and only if My = /—tM_; for allt < 0.

Proof. Let My = /—tM_; for all ¢ < 0. Then H(x) = (x,v(z))/(—2t) for all
x € My and t < 0 follows by Remark 2.2.
On the other hand, let H(z) = (z,v(z))/(—2t) for all z € M; and t < 0. Then

(X(p,t),v(p,1))
—2t

and thus up to tangential motion X (p,t) = /—2tX (p, to). |

(Ap, X (p,t),v(p,t)) = —H(p,t) = —

2.1. Hypersurfaces.

Theorem 2.4 (Huisken, [Hui90, Theorem 4.1] and [Hui93]). Let M C R"*! be a
smooth, complete, embedded, mean convex hypersurface such that H(z) = (x,v)/2
at every x € M and there exists a constant C > 0 such that |A| + |VA| < C and
u(M N Bg) < Ce®, for every ball of radius R > 0 in R"*1. Then, up to a rotation
in R"1 M is of the form Si’/’% x R*™™ form=0,1,...,n.

Proof. See [Manll, Proposition 3.4.1]. We scale M by the factor 1/2 so that H(z) =
(x,v(z)) at every € M. By covariant differentiation of the equation H = (z,v)
in an orthonormal frame {71,...,7p,} on M we get by the Weingarten equations
Viu = aﬂ/ = hzaja: that

V;H = (z,V;v) = (mﬁkx)h?

and by the Gauss equations V;V;x = —h;;v and Codazzi equations Vih;; =
Vihji = Vjhy, at one fixed point where the Christoffel symbols vanish, that

ViViH = gih + (x,ViVia)hk + (, 0, K)V;hY
= h;j + (z, l/>hikh§ + (z, Ox) g™V ihyy
= hij — Hhyphl + (x, 0r2) g™V ihij
= hij — Hhphl + (x, Vhi;) . (2.1)
Contracting with g* we have
AH =H (1—|A]?) + (2, VH). (2.2)

From equation (2.2) and the strong maximum principle for elliptic equations, The-
orem D.1, we see that, since M satisfies H > 0 by assumption and

AH < H + (z,VH)
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we must either have that H =0 or H > 0 on all M. Contracting (2.1) with h", we
have

(z, VIA]?)

WOViVH = AP = Hr(A%) + ===+,

which implies, by Simons’ identity (A.1),
Ahij = V;V;H + Hhyhly — |A]”hy;
that

A|A]? = AR hij) = W7 Ahij + 29™" NV 1 hI N yhij + hij ARY
= h9 Ahyj + 29" g5 9N i hi Vo iy + hijg* g7 Ahp
= 20" (V;V;H + Hhichl — |A]Phij) + 29"V 1 hi Vo b}
= 2|A]* — 2H tr(A%) + (2, V|A]*) + 2H tr(A4%) — 2|A|* + 2|VAJ?
=2|AP*(1 — |A]?) + (z, V|A]?) + 2|V A|]?.

Assume that H = 0. As M is complete and «x is a tangent vectorfield on M by
the equation (z,v) = 0, for every point x € M there is a unique solution of the
ODE

passing through x and contained in M for every s € R, but such solution is simply
the line in R™*! passing through z and the origin. Thus, M has to be a cone and
being smooth the only possibility is a hyperplane through the origin of R*+1.

Assume that H > 0 everywhere (so dividing by H and |A] is allowed). For R > 0,
define

IR = Vy(MNBg(0))
to be the outward unit conormal to M N Br(0) along (M N Br(0)), which is a
smooth boundary for almost every R > 0 (by Sard’s theorem, see homework or
Corollary C.3). Then, supposing that R belongs to the set R C R of the regular

values of the function | - | restricted to M C R™"! from equation (2.2) and the
divergence theorem, Theorem A.2, we compute

R? _
€R =/ ‘A|<VH777R> eXP<—2> du™ !
d(MNBRg(0))

a0 () (5 (11057 ) )

2
2
:/ (JA|H (1 —|A]?) + |A[(z, VH) exp( |>
MNBr(0) 2

+/MnBR<0> <2|A|<V|A|2 VH) - |4z, VH>> eXP( |2) dp"
/MQBR(O) <|A|H(1 |Al%) + 2‘A|<V|Al2 VH>) exp<|ff2|) "
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and similarly

H R? _
5R=/ (VIAP,nr) eXP<—> ™t
d(MNBr(0)) ‘A| 2

:/ A|A|Qexp<—||2> + <V <H exp<—|x|2)> V|A|2> du'™
MABgr(0) 4] 2 Al 2 ’
2
:/ <2|A|H (1-A]%) +M
MNBr(0) |A]
H 22N
|A|<x , VI]A| >> exp<2> dpu
(VH,VIA]?) H|VIAP? H 2 ) |z|?
+/ ( - — —(z,VI|A exp| ——— | du”
S S opap e VIAY 2

2H|VAP? (VH,V|AJ]?
:/ <2|A|H(1—|A2)+ |A | +< A‘ 5
MNBR(0) 4] 4]

CHIVIAPREY (Y
2143 P\To )
UR=25R—4€R
_ / (4HVA|2 B HV|A|”) exp(_W) i
MNBR(0) |A |A? 2
H Ek
= 4|APP|VA]2 - |V|A ep(—>d".
/MOBR@("' 2= 9147) e (<5 )

AP VAP = V] AP

the quantity or is nonnegative and nondecreasing in R. If now we show that

Hence,

As we have

minf o —
jinfor =0
we can conclude that, at every point of M,

AAPIVAP = |V]AP]. (2.3)

Getting back to the definitions of ez and dr, we have

R2
or| = —2/ V]A exp(—) dp?
o ‘ d(MNBR(0)) |A|< [AF ) 2
R2
+4/ |A(VH,n) exp(—> dp™~
d(MNBR(0))

R2
< 4exp(—) / ( V1AP] + |A|VH)
2 ) Joomnroy \IAl

R2

<8exp<—> / (H|\VA| +|A||lVH|) d
2 ) JamnBr(0))
2

< Cexp (—R2> "1 (0(M N Br(0))),

by the estimates on A and VA in the hypotheses. Assume that the lefthand side
does not go to zero. That is, suppose that for every R belonging to the set R C R
(which is of full measure) and R larger than some Ry > 0 we have

W @M 1 Ba(0))) > 5exp(1f) > 5Rexp(ff)
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for some constant § > 0. Recall the area formula and divergence theorem, Theo-
rems A.1 and A.2. As the function

R~ u"(M N Bg(0))

is monotone and continuous from the left and actually continuous at every value
R € R, we can differentiate it almost everywhere in Rt and we have, for Ry < r <
R,

R g
(M 0 Br(0) (M 0B, (0) = [ e (M 1 Be0) d

R
=/ / div s, (o) e dp™ " d€
T MI'TBE(O)
R
= —/ / <77£aH]\/[ﬁB§(O)>d,un_1 g
T MnNB¢(0)
R
+/ / (ne,me) dp" " d¢
rJoamnBe(0)
R
[ s
T 8(MQBE(0))
R 2 2 2
R
> 5/r fexp(i) dé =20 (exp<4> —exp(l)) .

u™(M N Br(0))e™ — oo,
for R — oo, in contradiction with the hypotheses of the theorem. Hence, the

Then

. . R2 n—1 _
Rgglo;ggnexp(Q) 11 (O(M 1 Br(0))) = 0.

It follows that the same holds for |og| and equation (2.3) is proved. By Cauchy—
Schwarz,
APV AP = [V]APJ2 = 4AVA < 442V AP?
or in coordinates
ARERIN L h R, = Vi (W5R])VE (I hE,)
= ARLRIV R VR, < ARLR] NV hVRRE,
with equality if and only if A and V A are linearly dependent, that is, at every point
there exist constants ¢ such that
vkhij = Ckhij

for every 4, j. Contracting this equation with the metric ¢ and with h" we get

ViH =c,H and Vi|A]? = 2¢|A)?,
hence

VilogH =c¢; and Vylog |A|2 = 2¢y .
This implies

H

Vi log T =0 sothat |A4|=aH
for some constant o > 0. By connectedness this relation has to hold globally on M.
Suppose now that at a point |[VH| # 0, then
ViH

H
which is a symmetric 3-tensor by the Codazzi equations, hence
hi;ViH = hy,V;H

thij = Ckhij = hij (24)
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at one point, where the Christoffel symbols vanish. Computing then in normal
coordinates with an orthonormal basis {71,...,7,} such that 71 = VH/|VH|, we
have with ¢¥ = §%,
0= |hyViH — hyy V;H|?
= (hijViH = hixV i H)g" g"" g"" (him Vo H — hin Vo H)
=2|VH*|A> - 2" ¢"™ " hij 0,V  HV 1, H
= 2|VH|?|A]> — 29" "WV HV ,, H
=2|VH|?|A]* — 2¢"h}h}V HV H
= 2|VH <|,4|2 -y (hgf) :
i=1
Hence, |A]2 =31 | (hll)2 and
A2 = (b)) +2) (n)*+ 3 ()
i=2 i,j#£1
SO h;- = 0 unless ¢ = j = 1, which means that A has rank one. Thus, we have two
possible (not mutually excluding) situations at every point of M, either A has rank
one or VH = 0.
If ker A = () on M, A must have rank at least two as we assumed n > 2, then we
have VH = 0 which implies VA = 0 and

hij = Hhixh = Hhipg" hu;
by equation (2.1). This means that for an eigenvalue A, with eigenvector §,,,
hijé, = Hhing" hij&l, = Hhing" Xngij&, = A Hhijél,
so that all the eigenvalues of A are 0 or 1/H. As the kernel is empty

i n
H:;)\mzﬁ

so that

H=+n and hy= \g/%
Then, the complete hypersurface M has to be the sphere S" -, indeed we compute
Alz)? = Alz|? = 2V (x, V) = 2n + 2(z, Az)
=2n —2H(z,v) =2n —2H?* =0,

by means of the structural equation H = {x,v). Hence, |z|? is a harmonic function
on M. Looking at the point of M of minimum distance from the origin, by the
strong maximum principle for elliptic equations, Theorem D.1, it must be constant
on M and M = ST\‘/H.

Let now ker A(z) # 0 at some point € M, with dimker A(z) = (n — m) and
0 <m < n (as A is never zero), and let

(). Vpm(z) € T,M C R™!
be a family of unit orthonormal tangent vectors spanning ker A(x), that is,
hij(@)vl(x) =0

for k=1,...,n—m. By (2.4), the geodesic v(s) from € M (M is complete) with
initial velocity 95v(0) = v (z) satisfies
(VH, 0sv)

vﬁs’y(hijGS'Yj) = H

hi;0s7y
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hence, by Gronwall’s lemma there holds
; ; *(VH,O0,
()09 = s 002 O exp [ T a0 ) —o
0

for every s € R. Since 7 is a geodesic in M, 92v(s) € (T.,;)M)*, that is, the normal
to the curve in R™*! is also the normal to M, then letting x be the curvature of y
in R™*! we have
K= _<VM7837> = hijas'yias’}/j = O,
thus 7 is a straight line in R**! and
x+ker A(z) C M,

where z +ker A(z) C R"*! is an (n —m)-dimensional affine subspace. Let now o(s)

be a geodesic from x to another point y parametrized by arclength and extend by

parallel transport the vectors v (x), k = 1,...,n —m, along o, then

(VH, 0s0)
H

and again by Gronwall’s lemma it follows that h;; ('y(s))vi(v(s)) =0 for every s € R
and k =1,...,n —m, in particular vg(y) € ker A(y). Hence,

Vo,o(hijvl) = hijvi,

dimkerA=n—m
on M with 0 < m < n (as A is never zero) and all the affine (n — m)-dimensional
subspaces = + ker A(z) C R**! are contained in M for every x € M, that is,

M + ker(M) C M.

Moreover, as h;;vj, = 0 along the geodesic o, we have

Rn+1 . .
Daso UV = v(asavk =+ <Vasg’0k, VM>I/M = —hijl}iasUZVM = O7

so the extended vectors v, are constant in R"*!, which means that the parallel
extension is independent of the geodesic o, that the subspaces ker A(x) are all a
common (n — m)-dimensional vector subspace of R"*! and

M =M +kerA.
Let z € M. Then there exists y € M N (ker A)L and v € ker A so that
rT=y+uv.
Define f : M — ker A by
f@) =v.
By Sard’s theorem, Corollary C.3, there exists a vector v € ker A such that
N(v) = f(v) = Mn (v+ (ker A)")
is a smooth, complete m-dimensional submanifold of R**!. Since M = M + ker A,
N(v) = N(w) for all v,w € ker A and
M =N xkerA.
This implies that
L:= N(0) = M N (ker A)*
is a smooth, complete m-dimensional submanifold of (ker A)+ = R™*+! with
M =1L xkerA.

Moreover, as ker A is in the tangent space to every point of L, the normal v, to
M at a point of L stays in (ker A)* so it must coincide with the normal v to L
in (ker A)*, then a simple computation shows that the mean curvature Hy; of M
at the points of L is equal to the mean curvature Hy of L as a hypersurface of
(ker A)* = R™*1, This shows that L is a hypersurface in R™*! satisfying Hy (z) =
(z,v1(z)) for every z € L. Finally, as by construction the second fundamental
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form of L has empty kernel, by the previous discussion we have L = S% and

M = S% x R™™™ which proves the claim. (|

Theorem 2.5 (Colding—Minicozzi, [CM12, Theorem 10.1]). If M™, for n > 2, is
an embedded hypersurface in R™T1, with non-negative mean curvature, satisfying
H = (z,v)/2, then M™ is of the form S”\}% x R*™™ form =0,1,...,n.

2.2. Curves.

Theorem 2.6 (Abresch-Langer, [AL86]). Let ¥ C R? be a smooth, complete, em-
bedded curve satisfying k(x) = (x,v(x))/2 for every x € X. Then X is either the
line through the origin or the Si/i‘

Proof. See [Manll, Proposition 3.4.1]. We scale the curve by the factor 1/2 so
that k = (z,v) for every x € 3. Fixing a reference point on a curve ¥ = X (1),
I € {S',R}, we have an arclength parameter s which gives a unit tangent vectorfield
7 = 05X and a unit normal vectorfield v = (75, —71), which is the clockwise
rotation of 7/2 in R? of the vector 7. Then the curvature is given by

k= —(0sT,v) = (T,05V)
so that
Osv=kT and 0,7 = —kU.
The relation x = (z,v) implies the ODE for the curvature
Osk = (T,V) + (x,0,v) = k{z,T) .

Suppose that at some point x = 0, then also dsk = 0 at the same point. Hence, by
the uniqueness theorem for ODE’s we conclude that « is identically zero so that X
is a line. Since (z,r) = 0 for every x € ¥, we conclude that 0 € ¥. So we suppose
that k is always nonzero and possibly reversing the orientation of the curve, we
assume that x > 0 at every point, that is, the curve is strictly convex. Computing
the derivative of | X|?,

Osk

Q| X =2(X, 1) =2 p

_ =
n—Cexp( 5

for some constant C' > 0. Hence, k is bounded from below by C' > 0. Since X

is convex, we can consider the coordinate ¥ = arccos(ey, ). (Note that ¢ is only

locally continuous and jumps after a complete round). We have 9,9 =  as well as
Osk _ 0s09k 1 —K(z,v) 1

_ 2 _ - _
={(x,7) and Ojk= = - =L (2.5)

= 20, log k

we get

819,‘{ =

Multiplying both sides of the last equation by 209k we get

20,
0= 2&9/{3129/4; + 2k0yk — or

= 819((819/1)2 + k% —log /<;2) ,
so that,
(O9k)? + K% —logr? = E > 1
along all the curve. We have E = 1 if and only if 2 = 1 along the curve, which

is the unit circle centered at the origin of R2. When E > 1, it follows that & is
uniformly bounded from above, hence recalling that k = C exp(|z|?/2),

Y C BR(O)

for some R > 0 and by the embeddedness and completeness hypotheses, 3 must be
closed, simple and strictly convex, as kK > 0 at every point.
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Suppose that ¥ is not a line. We follow the lines of [GH86, Lemma 5.7.9]
and [Pih98, Lemma 7.23]. The system
{1, V2 cos(nd), \@sin(nﬂ)} (2.6)

neL
forms an orthonormal basis of the periodic functions in the Hilbert space C?([0, 27])
with respect to the L%-inner product (see e.g. [HL99, p. 124]). We have ds; = d/x
so that

/ Sln(ﬂ) dY = sin<8> dst = COS(27‘(’) — COS(O) =1-1=0
st K St Rt
and
/ oS0 gy — cos(s) ds, = sin(2r) — sin(0) = 0.
st S}?t R

R t

Furthermore, integration by parts yields

[ sin(¥) 1 0cos

and

Additionally, we have

0 (1 1 0k
0=—| —=(—-|d¥=| ——=—4ddI.
/51 819(/@') /Sl k2 09
Hence, 1//@2%/1 is orthogonal to the first five basis functions of the basis (2.6).

Since all the other basis functions are zero at at least four points in [0, 27] with
distance < 7/2, there exists a number ig > 4 and points 9; € St, i € {0,...,4p}, so

that 5
1 Ok
(#&9) (791‘7 T) =0

T
[9; — 0] < 3

and

for i € {0,...,ip — 1} and
T

|’L97;0 — (27T+190)| S 5 .

Since 1/k2Zk is periodic on [0,27], ig is odd. Define the intervals
Ii = [191’7191’4—1]

for i € {0,...,ip — 1} and

I’io = [0,190] U [191'0,27'(') .
Then |I;| < m/2 for all i € {1,...,ip}. Since 93k = 1/k — K, it holds that d3r #
0 when Oyx = 0, otherwise this second-order ODE for x would imply dyx = 0
everywhere, hence x = 1 identically and we would be in the case of the unit circle.
Suppose that X is neither a line nor a circle. By looking at the equation for the
curvature (2.5) we can see easily that k < 1 at a local minimum and x > 1 at a

local maximum. Suppose now that «(0) is a local maximum and k() is the first
subsequent critical value for x for ¥9 < 7/2 by the above. Then the curvature is
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strictly decreasing in the interval [0,9p]. Also k() < 1 must be a local minimum
of the curvature, as every critical point is not degenerate. By a straightforward
computation, starting by differentiating the equation 63,% =1/k — K, one gets

03 K% = 205 (KOgK) = 209(0gr)? + 209 (kO3K) = 60yk03K + 2k09 O3k

= 6% — 6KkOyk — 2%8,9/9 — 2k09Kk = 4% — 40yK>
K K K
so that o
93K2 + 40gK? = 4%“ .
We compute
o % _ v 3.2 2
4 sin(2¢) dd = sin(20) (95k% + 409K7) dv
0 K 0

Yo Yo
= Sin(219)8129.%2’30 - 2/ cos(209)03 k% d + 4/ sin(209) gk dv
0 0
= 2sin(290) (k(90)I56 (o) + (Oyk)*(9o)) — 2005(219)8@&2ng
190 190
—4 / sin(20)9y k> dv + 4 / sin(20) 9y k> dv
0 0

= 2sin(29p) (k(90)I55 (o) + (Oyk)? ()
— 4cos(209)k(09) 09 k(o) + 4K(0)0yk(0) .

Now, since dyr(0) = dyr(Jo) = 0 using the equation for the curvature 93k = 1/k—x
we get

Yo
4/ s,in(2z9)ail_;'i 49 = 2sin(200)(1 — #2(00)) ,
0

and this last term is nonnegative as kK < 1 at a local minimum and 0 < 2¢y < 7.
Looking at the left-hand integral we see instead that the factor sin(21) is always
nonnegative, since 20y < 7w and Jyk is always nonpositive in the interval [0, Jg],
as we assumed that we were moving from a local maximum of k at 0 to a local
minimum of s at ¥y without crossing any other critical point of k. This gives a
contradiction so X must be the unit circle. O

3. CONVEX HYPERSURFACES WITH PINCHED SECOND FUNDAMENTAL FORM

Definition 3.1 (Complete Riemannian manifold). A (geodesically) complete mani-
fold is a Riemannian manifold for which every maximal (inextendible) geodesic is
defined on R.

Definition 3.2 (Conformal map). Two maps X,Y : M™ — R"*! are conformal, if
there exists A : M™ — R with
X Y
9ij = /\gij :
We say X is quasi-conformal with respect to Y if

gi)j(->)\gz§;.

See [Ham94]. Suppose that M = X (M™) C R"*! = R™ x R is written as a graph
over a convex over a convex open set U C R" of a strictly convex function

y:f(xla"'vxn)
so that y — oo as ¢ = (x1,...,2,) — OU. By translating upwards if necessary,
since y is bounded below, we can assume y > e everywhere, so that loglogy > 0.
Let g;; be the Riemannian metric induced on M so that
9y Oy

9is =0 5t gai
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Theorem 3.3 (Hamilton, [Ham94, Theorem 2.1]). The conformally equivalent met-
ric
Gij = g4
(ylogy)?
is complete with finite volume.

Proof. First, we show that g;; is complete. We have det(g;;) > 1. For any geodesic
~v: I — M going to infinity, we have 4™ — oo. Therefore its length satisfies,

£6) = [ Wwlsar > / oo() Jaet(3i;)dy

dy o
> / = loglogy|7% (4 = 0.
v (a)

ylogy

Since geodesics have constant speed, this is what we desired. To estimate the
volume, we observe that, because y is a strictly convex function of z, outside a
compact set we must have

%y
| >4
oxt| —
for some § > 0 and at least one i € {1,...,n}. Let dV denote the volume element

on M in the induced metric g;;, which in = coordinates is

_ dy Oy 1 n
dV—\/det <5U—|—a$iamj)dx Lo.dx™.

Let £k € N and
MF=Mn{e+k—-1<y<e+k}
and let dV* denote the volume element of the part of M*. We can devide M*

into pieces MF, ..., M*, where g;;i is largest on MF, and estimate dV* from above
on each piece. For each £k € N, on Mi’ﬂ we take 2',..., 2" Ly, 2T . 2" as
Oy Oy

coordinates. Since 7% is larger than the other derivatives, and ’ 57| =0 >0,

dy Oy 9y
7)< .
\/det (5” * Ozt &W) =¢ ‘ Oz!

dvF < Cdxt...da"tdydx™tt .. da”

and thus

on MF. By the gradient estimate shows that
x| < Cy
for a suitable large constant. Let
UF = {z eR" | (=, f(x)) € M} .

1

We can integrate in every direction z!,..., 2=, 't ... 2" and estmate

dvk <c | da'.. . dzildydz'Tt . da" < C |y ldy,
Uk Uk Uk
that is,
dVyi < Cy"dy.
Hence,
o Ccd
avi <
ylog"y
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and

/dV ZZ/ dV’“<CZZ/kyIOg -

kEN i=1 keN i=1

* d -C o C
= C/ yn = — = < o00. O
. yloghy (n—1)log Yl

Remark 3.4. (i) Let p,g € S™. We rotate the sphere so that the north pole
N lies on the geodesic between p and ¢ with equal distance to both points.
The stereographic projection ¢ : S*\ {N} — R", which is conformal, projects
the sphere to the plane. We can choose the projection such that ¢(p), ¢(q) €
{z™ = 0}. By construction, |¢(p)| = |¢(q)| = r. Via the inverse stereographic
projection ¢ : R® — S\ {N} we can conformally project the plane to the
sphere of radius r. The points ¢(p) and ¢(q) are mapped antipodally to the
equator. Hence, 1/rotop: S\ {N} — S"\ {N} is a conformal map that,
after rotation, maps p to the north pole and ¢ to the south pole.

(i) Let X be an embedding of the S”~1, ¥ be an embedding of the S™ and Z be
an embedding of the cylinder S"! x [~ R, R], where

Y (z,9) = (X () cos(9), sin(¢))

and
Z(z,9) = (X(x), 2(9))
for ¥ € [-m/2,7/2). Then

@)= (<P )

@ =% o)

For Y and Z to be conformal with (g};) = A (¢7), we have to choose
1
cos(¥)
for 9 € [-m/2+4¢e,7/2 — €|, where € > 0 and R = R(¢e), which is realized by

2(9) = log (tan (g + 1)) .

Theorem 3.5 (Hamilton, [Ham94]). Let U be an open subset of the unit sphere
S™ which is not empty and whose closure is not the whole sphere. Then there is no
metric on U, conformal with respect to the round metric, which is complete with
finite volume.

and

A(©9) = cos? (V) and 2'(9) =

Proof. By hypotheses we can find some point py which is contained in U, and some
point pg which avoids the closure of U. By Remark 3.4, we can assume that py
is the north pole and pg is the south pole. We can then find an ¢ > 0 so that the
e-ball around py lies in U,

BE (pN) cU
while the e-ball around pg avoids U,

Be(ps) CS"\U.

By Remark 3.4, we can find a conformal map ¢ of the sphere S™ minus these two
balls to the cylinder S*~! x [0, L],

p:S" =St x [0, L]
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taking the boundary of the e-ball around py to S*~! x {0}

9(0B:(pn)) ="' x {0}
and the boundary of the e-ball around pg to S"~! x {L},

p(0B:(ps)) =S"~" x {L}.
The part of U outside the e-ball around py will map to some relatively open subset

W= o(U\ B:(pn)) C ("' x [0,L]) \ (S"" x {L})
of the cylinder which contains S*~1 x {0} and avoids S~ x {L},
St x {0} CcW.

The subset W will be a noncompact manifold with one compact boundary compo-
nent S*~!. Any complete metric

¢ on U
with finite volume conformal to the round metric
gSn on S"

would give a complete metric with finite volume on
¢V on W
conformal to the product metric
gL oy snl x [0,L].
We show that such cannot exist. We introduce coordinates
9=,...,0,1) on S*!

and
t on [0,L]

Let ggnf1 denote the metric on S"~! and du the volume form. Then

Sn—l
— S"Tix[oL] _ (9 0
gi=g (% )

is the product metric on S"~1 x [0, L] and

dV = dudt
is the product volume form. For every ¢ € S"~!, there will be a first point
t = h(9)

where the pair (¢,¢) is no longer in W. Of course h may not be a continuous
function and the pair may reenter W for larger values of ¢t. This does not matter.
Any quasi-conformally equivalent metric on W is given by

§=A0,t)g
for some funtion A defined at least for 0 < ¢ < h(«). The corresponding volume
form is .
dV = X"dudt .

If the total volume V of W in the conformally equivalent metric is finite, we have

// Ndudt =V < 0.
w
By Hoélder’s inequality

//W)\dudt < ( //W o dt)”ﬂ ( //W dudt) (n-1)/n
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// dudt < LIS"™| < 00
w

// AW, t)dpdt < oo
0<t<h(¥)

On the other hand, if we integrate first in ¢, we see that

h(9) h(9)
/ (/ (0, 1) dt) dp > |S"™Y inf (0, t) dt
sn=1 \Jo

yesn—1 0

and surely

Therefore

and therefore
h(9)
inf / A0, t)dt < o0
vesn -1 Jo
But along a path where ¢ is constant we have § = A. Thus there is some ¢ where
the path from (¢,0) to (9, k(1)) has finite length. This shows that the metric is not
complete and proves the theorem. O

Theorem 3.6 (Hamilton, [Ham94, Theorem 1.1]). Let M be a smooth strictly
convex hypersurface bounding a region in R™1, n > 2. Suppose that its second
fundamental form is e-pinched in the sense that

hij > €Hgij
for some e > 0. Then M is compact.

Proof. Assume that M is noncompact. By Theorem 3.3, M has a conformally
equivalent metric g;; which is complete with finite volume. Observe that the Gauss
map v : M — S" gives a diffeomorphism of the convex hypersurface M onto an
open subset U = v(M) of the sphere S” which lies in a hemisphere. Thus U is not
empty and its closure is not all of S*. By Theorem 3.5, there is no metric g;; on
U, quasi-conformal with respect to the round metric, which is complete with finite
volume. However, the pinching condition implies

eHSF < nk < HoF
so that
eHO; = eH6FOy, < hFoy, = 0w < HOFO, = HO; .
We define
Gij = (O, 0jv)

and observe that )

(&’H)Qgij = (&‘f{) gij .
Hence,
T\ 2~ ~ T2~
(eH) gij < 9i; < H?Gij -
If g;; is complete, g;; is, by the first inequality. If g;; has finite Volume, §;; must
have by the second inequality. This is a contradiction. O

4. SINGULARITIES

Definition 4.1 (Singularities, see [Eck04, Definitions 3.5 and 5.1]). We say that a
solution (My)eqo,r) of (MCF) reaches a point xg € R™™ at time T < oo if there
exists a sequence (pg, tx)ken in M™ x [0,T) with ¢, 7 T so that X (pg, tx) — xo for
k — oo.

Let S be the set of points z € R"*! so that there exists a sequence (py,tx)ren
with tx /T and X (pg,tx) — « for k — oco. We call S the set of reachable points.

A point zg € R? is called a singular or blow-up point of the flow at time 7T if
(M¢)iepo,1) reaches xo at time 7 and has no smooth extension beyond time 7" in
any neighbourhood of xg. The sequence (pg, tx)ren is called blow-up sequence.
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All other points (which includes those not reached by the solution) are called
regular points.

We want to investigate singularities of the flow.

Proposition 4.2. Let T < co. If |A]? < Cy on M™ x [0,T), then V" A|> < Cy,
on M"™ x [0,T), where Cy, = Cyp(n, My, Cp).

Proof. See [Sch17d, Proposition 2.1.5]. By Lemma 1.4,
VAP < AIVTAP —2lVTMTAP £ C(nym) Y [VIA|IVIAVRA| V™A
it+j+k=m

We give a proof by induction. The case m = 0 is trivially true. So we assume that
for m > 0 we have |V'A|?> < C; for 0 <1 <m — 1. Thus

HIVTTLAP < AIVTTLAP - 2|V AP + By
and
OH|IV™AP < AIVTA]? — By, (1+|V™A]?) .
We consider the function f := |[V™AJ? + B,,|V™ 1 A|?, which satisfies
Wf <Af—By (1+|V™A]?) = 2B,|V"A” + By,—1Bn,
<Af—Bu,f+ B3|V A? + B, 1B,
<Af-B,f+B.
Define f := exp(Bpt)f — exp(B,,T)Bt. Then
0 f < exp(Bt) (B f + 0:f) — exp(ByT)B
< exp(Bmt)(Af + B) —exp(B,, T)B < Af
which implies f(-,t) < maxy; f(-,0) and thus

f(,t) <exp(—Bpnt) (mﬁxf(-, 0) + exp(BmT)Bt) <C. O
Theorem 4.3. Let T' < oo and (My)iejo,1) be a family of smooth, immersed hyper-
surfaces evolving by (MCF) with
M, N Br(0) #0
for some R >0 and allt € [0,T) and there exists Cy < co such that

sup sup|4| < Cp.
t€[0,T) M,

Then M is smooth.
Proof. By Proposition 4.2,

sup sup|V™A|l < Ch,
tel0,T) M;

for all m € NU {0}. By Lemma 1.4,
8t1/ =VH

so that the rotation of the normal is uniformly bounded in small space-time neigh-
bourhoods. That is, there exist ¢y € [0,T), r > 0 and € > 0 so that for each p € M™
there exists an open neighbourhood

Ur,to (p) = Xﬁl(BT(X(p, tO))v tO) CR" )
where B, is the geodesic ball in M;,, so that, after rotation and translation,

v(g,t) e S"Nn{a" > ¢}
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for all ¢ € U, 4,(p) and ¢ € [to,T). For Ry > R, there exist finitely many points
{pi}No, so that

No
M; N Bk, (0) - U X(Ur,to (pi)a t)
=1

for all ¢ € [to, T). For p € {p;}}°, we can write
M; 0 X (Ur.1(p), 1)

as a graph of a function f : U, 4, (p) X [to, T) — R with |D™ f| uniformly bounded on
Urto(p) X [to, T) for all m € NN {0}. Let (tx)ren with t 7 T. By Arzeld—Ascoli,
for each m € NN {0}, the sequence

(fi = D" (k) pen
converges uniformly along a subsequence to a continuous limit
J&=D"foo =D"f(-,T).
Hence, f(-,T') is smooth. This can be done for each ¢ € {1,..., Ng}. We define
X=X (- tg) .

Locally, we can describe X}, via fr. Thus X (-,T) is smooth on UfV:Ol Ui, (pi) and
so is M N Bg,(0). Let now be (R;);en be a sequence of radii with R < R; 7 cc.
For each | € N, there exist finitely many points {p;})\'; so that

N,
M; N Bg, (0) - U X(UT,to (pi)vt)
i=1

for all ¢ € [tg,T'). Define
Xi = X' ty)

locally via fi. By the same argument as above, X!, = X!(-,T) : Uiv=l1 Ur o (pi) =
R+ and My N Bg,(0) is smooth for every [ € N. We now pick a diagonal sequence
to obtain a smooth limit X = X(-,7) : M™ — R""! with image M7 which
coincides with X’ on every ball Bg,(0). Since M; — My continuously for ¢t — T,
the smooth convergence holds for ¢t — T O

Corollary 4.4. If T < oo, then limsup,_,, maxyy, |A|* = oo.

Proof. See [Sch17d, Corollary 2.1.6]. Let us assume to the contrary that |A|> < Cy
on M™x[0,T). By Proposition 4.2 all higher derivatives of A are uniformly bounded
on M™ x [0,T). By Theorem 4.3, X(-,T) is a smooth immersion. By short-time
existence this implies that we can extend the solution further, which contradicts
the assumption that 7" is maximal. O

Lemma 4.5 (Hamilton’s trick [Ham86, Lemma 3.5]). Let f : [a,b] x (0,T) — R be
in C'. Then fuax(t) = max,e(q,p) f(p,t) is locally Lipschitz for t € (0,T) and at a
differentiable time,

d .
Gune(®) <500 {017 0.0) | € o8] with 70.0) = Fo) ]
Proposition 4.6 (Huisken, [Hui90, Lemma 1.2]). IfT < oo, then max|A[?*(t) — oo

fort = T where

max |A[(t) >

20T —t)
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Proof. By Corollary 4.4, |A|max(t) — oo for t — T. For t € (0,T), let p € M™ so
that [A]*(p,t) = |A[f,.(t). Then

Hess |A|?(p,t) < 0.
By Lemma 1.4
O AP = AJAP — [VA]? + 24" < 24"
t (p,t). Since |A|2,, is Lipschitz we obtain by Rademacher’s theorem, Theo-

rem A.3, that 9;|A|2,, exists for almost every ¢ € (0,7). By Hamilton’s trick,
Lemma 4.5,

at|A‘max( ) < max {at|A| p? |p € M™ with |A‘ (pa ) ‘A|r2nax( )}
< max {2[A|*(p, 1) |[p € M™ with [A*(p, 1) = [A[},0x (D) } = 2/ Al (t)

for almost every t € (0,7). Assume that there exists a time to € [0,7) where
|A|2.x = 0. Then M,, is a plane segment in R"™! which contradicts that T < oc.
Hence, |A|?,.(t) > 0 for all t € [0,7T) and |A|2, is Lipschitz as well. Rademacher’s
theorem implies that 0;|A|,2,(t) exists for almost every t € (0,7). Thus,

Ot Alax = | Almax Ol Alfax = —2 (4.1)
for almost every t € (0,T). Since |A|,2, is Lipschitz, we can integrate (4.1) over an
interval [t,tx] C [0,7) to obtain

1 1
AR (tr) AR (D)

Let ¢t € [0,T) and (tx)ren be a sequence with t;, € (¢,T) for all k € N, ¢, /T and
|A|2, .« (tk) — oo for k — co. Taking the limit k¥ — oo in (4.2) yields

—oty — 1). (4.2)

1
Agm =270

for all t € [0, 7). O

Example 4.7. (i) The curvature of the spheres S}() blows up in the exact rate.
(ii) A dumbbell with a small neck develops a singularity at the neck before the
surface disappears.

We distinguish between two types of singularities.

Definition 4.8 (Type-I and type-II singularities). We say that a singularity is of
type I, if there exists a constant Cy > 1 so that

Co
Alpax(t) € —— 4.3
() < 2 (13)
for all t € [0,T), and of type II, if such a constant does not exist, that is,
lim sup |A|max(6)VT —t = 00 (4.4)
t—=T

Remark 4.9 (Parabolic rescaling). Let A > 0 and tg € (0,7). Consider the rescaled
flow Xy : M™ x [-\%tg,t0) — R? with
Xa(p,m) = A (X(p,to n A2) - x()) .
and define
M} ==\ (M52 — 20) -
Then 7 = M\2(t — tg), 0 = %&5, gf‘j = N2g;; and hf‘j = Ah;; so that

1 1
|A)\| = X|A| and H)\ = XH

so that ) 1
87—X)\ = XatX = —XHV = —H>\l/
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again flows by mean curvature flow.

Theorem 4.10. Let T < oo and k € N. Let § # Jp C Jri1 be a sequence
of intervals and (MF),.c ;. be families of smooth, immersed hypersurfaces evolving
by (MCF) for each k € N with

M N Bg(0) # 0

for some R > 0 and for all k € N and all T € Ji, and there exists Cy < oo such
that

sup sup sup |Ag| < Cy.

keNTeJ, Mk
Then there exists a subsequence ((Mf)TGJk)keN that converges on compact subsets
of Joo and in R™"*L to a smooth, immersed limit flow (M2°),c . evolving by (MCF).

2
Proof. By Proposition 4.2,

sup sup sup |V Ax|| < Cp,
keNTeJr Mk

for all m € NU{0}. Let Ry > R, ko € N and 7y € J for k > ky. Since Mffo is
smooth and
ME = M} N BRE(0) # 0

for every k € N, there exists a subsequence (MfO Jken With continuous limit
- 1
Mz C B (0).

Moreover, there exists r > 0 so that for every x € MS{?,

M> () := ME)" ﬂBf'H(x)

T0,T

can be written as a graph of some function g : B?(z) C P(x) — R over some affine
tangent plane P(x) at z. By the convergence, there exists a subsequence (M{ )ren
so that, for k£ big enough,

rk n+1
M‘I’O ﬁ BT‘ (I)
can be written as graphs of some function gi : B!)»(x) — R over the same affine
plane P(z). By the uniform bounds on |Ag|, |D™gg| is uniformly bounded for all

m € N and gy is smooth for every k > kg. Furthermore, there exists d,& > 0 so
that, after rotation and translation,

vi(y) € S"N{z" > e}

for all y € M* N B2 (z) and 7 € (19 — 6,70 + 0), so that M* N B**!(z) can be
written as graphs of the functions fi, : BJ!y(x) X (to — d,%0 +6) — R. Since all time
derivatives can be expressed in terms of spatial derivatives, f is smooth in time. By
Arzeld—Acsoli, (fx)ren converges along a subsequence to a smooth limit fu. Like
in the proof of Theorem 4.3, we can repeat this process this for a sequence (R;);en
with R > R; — oo, and after picking a diagonal sequence we obtain a smooth
limit M2 C R™*!. Note that a subsequence of the Xj(-,7) does not necessarily
converge to a limiting immersion; it will be necessary to “reparametrize” X(-,7)
(see [Lan85, | for details). O

5. TyP-I SINGULARITIES

We want to rescale the surface M; near a type-I singularity as t — T < co. The
following rescaling technique was introduced in [HS99b, Remark 4.6].
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Definition 5.1 (Type-I rescaling). Let (pg, tx)ren be a blow-up sequence in M™ x
[0,T) with ty /T for k — oo and

AP (pr, t) = Al (p,ty) = A2 (p,t
A (pr, ) = max |A[(p, L) Mga[tgftkll *(p,t)

for each £ € N. We set
AL = AP (pr, tr) and ay == —\iT
and define the rescaled embeddings Xy : M™ x [ag,0) — R? by
T
Xk(p,T) = >\k (X(p,T—l— )\2> —x0> . (51)
k
Lemma 5.2 (Properties of the type-I rescaling). Let X : M™ x (0,T) — R? be a
solution of (MCF) with T < oo. For the type-I rescaling 5.1 in case of a type-1
singularity,
A — 00 and Qp — —00
for k — oco. Furthermore,

Xk(O,Tk) S B3Cg(0) and |Ak|2(077'k) =1,

where ,
Te = —\(T —ty) € {C;O, ;]
and, for § >0,
max |Ag| < G
M7 X o, —62] 0
for all k € N.

Proof. We follow [MB14, Corollary 4.8, Lemma 7.1.8 and Proposition 7.1.10]. Let
xo € R"1! be a singular point with corresponding blow-up sequence (pg,tx)ren in
M™ x[0,T). By the definition (4.3) of a type-I singularity, we calculate for p € M™
and tg,t; € [0,7),

\Xmm—xwwng/’

tr

0X h
S| [l

tr

t ty C
< 2/ |H|max()dt <2 | ——2—at
t e /2(T = t)

= Co (VAT — 1) + VAT~ 1)) < Cov/aT— 1) (52)

Since the sequence (pg)ren is bounded, there exist a point pp € M™ and a subse-
quence with

Dk — Do (5.3)
for k — co. We employ (5.2) for p = p;, and obtain

|X (1, t1) — X (pi, tr)| < Con/2(T — tr) (5.4)

for all k,l € N. By Definition 5.1, we can choose lg = ly(k) large enough so that,
for fixed k € N,

| X (p1, t1) — wol < Co/2(T — tg) (5.5)
for all [ > ly. Estimates (5.4) and (5.5) imply
[ X (pus te) — ol < | X (prs i) — X(pr,t)| + | X (01, 1) — ol

< 3Co\/2(T — ty,) (5.6)
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for fixed k € N and for all [ > ly(k). For given € > 0, choose ko = ko(e) large
enough, so that

3C)y 2(T — tk) <
for all k > ko. Then (5.6) yields

DO ™

g
| X (pr, tr) — wo| < 3

for all k > ko(e) and | > ly(k). By the convergence (5.3) and the continuity of the
immersion X in its spatial argument, we can further choose [y large enough, so that
also

13
| X (po, tr) — X (o1, tr)| < B}
for I > ly. Hence,
| X (po, tr) — ol < | X (po,tr) — X(p1» tr)| + | X (1o, te) — 20| <€

for all k > ko(g). Since € > 0 was chosen arbitrarily, we obtain

X(po, tk) = o (5.7)
for k — co. Definition 5.1 and the type-I condition (4.3) yield
Co
A = |A(pk, tr)| € ———=
k= [A(pr, tr)| 3T — tn)

and the estimate (5.2) implies

| X (po, t1) — X (po, ti)| < 2Co/2(T" — ty) <
We send [ — oo in the above inequality and obtain with (5.7),
Aklzo — X (po, ti)| < 2CF

for all K € N. The definition (5.1) of the rescaled embedding provides, for 7 :=
Nty —T),

204
Y

| Xk (po, k)| = Ak <203

X(po,T+ ;’;) — 20
k

for all k£ € N. By the convergence (5.3), for given § > 0, there exists k; € N so that

|pr — po| < ¢ for all k > kg. By the continuity of the rescaled embedding, for given

e > 0, there exists § > 0 so that, for |pr — po| < 4, we have

| X% (P, Tk) — Xk (po, )| < €.
Hence, for given € > 0, there exists k1 € N so that
1 X500, 7)| = [ Xk (pr, 7o) | < | X0 (Prs T) — X (Po, )| + [ X (po, )| < £ 4 2CF

for all k > ki. Choosing ¢ = CF yields Xj,(0,74) € Bscz(0) for all & > ki To
bound the sequence
(Tk = 7>\i(T — tk))kEN 5
we estimate
ap=-MNT < -NT+ Nty =7,<0

for all £k € N. The rescaling behaviour from Remark 4.9 of the curvature yields
Tk

1
= 5 |AP(pr,te) = 1.
#) =%

Using Definition 5.1 and the lower blow-up rate from Proposition 4.6, we estimate

= =N 1) = =LA, (T — ) < — = =

1
|Akl?(0, %) = |Aw|* (Pr, ) = V'AF (Pk,T+
k
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and, by the type-I assumption (4.3),

C3(T — t) C2
(T — ) — | A2 oy s oot mte) Lo
Tk )‘k(T tk) |A‘ (pk,tk)(T tk) = Q(T—tk) B)

for all k € N. For the curvature estimate, let 6 > 0, k € N, 7 € [ag, —0?%] and
p € M™. Then, the type-I condition (4.3) rescales to

C Co

1 T 1 0
Ap(p, )= — |A ,T+) < — < .
Ak (p, )l = - <P e Ne /2N T
Hence,
Co
Al < =
I
for each k£ € N. O

Theorem 5.3 (Convergence of rescalings). Let (My)icjo,r) be a smooth, immersed
solution of (MCF) with T < oo. For the type-I rescaling 5.1 in case of a type-1
singularity, there exists a sequence of rescaled immersions

((Mf)re[ak,0)> EEN

that converges for k — oo along a subsequence, uniformly and smoothly on compact
subsets of (—00,0) and R™ to a mazimal, smooth limit solution (M2®);e(—o000)
which satisfies

M72 N Byez(0) # 0 and |Aso|?(z) = 1 for some x € M,
where 7o, € [—C2/2,-1/2] and, for § > 0,
sup  sup |[As| < = .
r€(—00,—8) M .l 62
Moreover, if (M¢)iepo,1) s embedded, then (M?2°);c(—o0,0) 15 embedded.

T

Proof. The convergence follows from Theorem 4.10 and Lemma 5.2 yields the prop-
erties. By Proposition 1.9, MF* is embedded for all K € N and all 7 € [ag,0).
Furthermore,

) sin(e) . sin(g)d?
d > d > Aed(0
w(T) > mm{ k(ak), mk(T)} > mln{ £d(0), o
is uniformly bounded in &k for 7 < 6 < 0. O

5.1. Huisken’s monotonicity formula. For 2, € R"*! and ¢, € R, define the
backward heat kernel @ 4.y R+ x (—o0,t9) — R by

1 |z — o
D, t) = ——— At — 1 )
(z0.t0) (25 1) (4 (tg —t))/2 exp< 4(tg — t)

Let @, 20,90 € R"! 9,79 € R, t € (—00,t9), A > 0 and 79 > A\%(t — tg). Then
1
P (yo.70) (A(x — Zo), Az(t - to)) - VQ(ro+yo/A7to+To/A2)(xv t).
For the rescaled flow (M) c—x27,0),

dyiy = \Jdet(gly) dp = (/2 det(gij) dp = N"dp.

Hence, the integral

/ (I)(ZIO’TU) dpx = / (I’(IOJF?JO/)\»TJFTO/)\Q) dp”
M M,

—7/A2
is scaling invariant, which makes it a useful quantity. In the following, we set
H(z,t) = H(p,t) and v(z,t) = v(p,t) for x = X(p,t).
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Theorem 5.4 (Monotonicity formula, Huisken [Hui90, Theorem 3.1]). Let X :
M"™ x (0,T) — R" be a solution of (MCF). Then

d
e ) Y= [ |\H
dt (/M,, (0,£o0) th) /Mt

forto € (0,T] and t € (0,10).

Proof. We follow the lines of [Hui90, Theorem 3.1]. We set g = 0 and t; = 0.
Since x = x(t) with 0;z(t) = H, we derive

(x — xo, V)
2(tg — t)

2
(I)(aﬂo,to) d,u?

i@ _((n/2)4r  2(x,H) |z o
dt - OO T\ T 4nt 4t 42 ) 00
n (w,v) |z|?
(2 4+H e
(21& T T e ) P

so that

d no e
dt </Mt (0.0) Mt) /Mt (—27& * —2t 42 (0,0) GHy

Observe that

_H?2 gL
+ —t 4¢2

() (@) ‘ (z,v)

and -
|2 = (z,v)? + g (2,0, X) (x,0; X) .
Hence,

n (@v) |2 o
— 4+ H = _
-2t * -2t 4¢2

(z,v)
—2t

- = [, - 4 , . _\lg_
== (n H({z,v) 579 <a:,31X><x,8]X)> ‘H

For z € M,,

(5.8)

diVMt r = diVMn ){(‘p7 t) =n
and by the divergence theorem,

— H<J,‘, V>(I)(0,()) du? = / <x, H>(I>(0’0) d/j,? = — diVMt (x CI)(O’O)) du? 3
M, My M

where
div g, (m <I>(0’0)) = ® g0 divy, T + <a:, VM‘@(O’OQ .
We calculate on M,

. 2(x, 0;x) (@, 0;X)

M, — i _ i
v @(070) = 7@(070)9 7 4t a]X = 7(1)(070)9 7 ot 8JX .

so that

dlth (Z‘ (13(0,0)) =n — _7%9 J<1'7 81'X><x7 8J’AX>(I>(0,O)

which proves the claim. O

Theorem 5.5 (Weighted monotonicity formula, [Eck04, Theorem 4.13]). Let X :
M"™ x (0,T) — R be a solution of (MCF) and ¢ : R"*1 x (0,T) — R in C%!.
Then

2

d
¥ (b(moyto) du?

2 ) dup = —
dt Mf,(p (wo,to) Q¢ /]\/[t

0
— —A d n
+ /Mt ((’% Mt)QD (zo,t0) by

(x —z0)t

o =0

forto € (0,T] and t € (0,19).
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Proof. The proof is like the one for Theorem 5.4 with one additional step. When
applying the divergence theorem, Theorem A.2, we now use the vector v = z¢ ® g ¢
instead and deduce

/ (z, Hv) ¢ @(0,0) dpi’ = / divay, ((@‘P q’(o,o)) dui
My n
where
divas, (29 (0,0)) = 1@ ®(0,0) + ¢ (2, VM @(00)) + (2, VM) B0 ) -
Since VMt = 7,(¢)7T; we can utilise the gradient of ®(0,0) again to find
(2, VM)
—2t
so that integration by parts yields the extra term

x’VMt(p n n
/ (@.V%) >‘I’<o,o> dpy = / A, 0,0y dpy’ -
M, My

D0 = — (VM@ ), VMip)

—2t
The minus sign comes from the operation in (5.8). O

Remark 5.6 (see [Eck04, Remark 4.8]). If M, is only defined locally, say in
B /g, (x0) X (to — p%,to), then we can use the cut-off function

3
|7 — 0|? + 2n(to — t)
(p,(omoyto)(l'vt) = <1 - 2
p +

W] ere (61 AMﬁ)(p < () I h S We S ]] get the mOHOt n.C, y 0 ) y
dt t n — 2
d M,y (7;07t0) (IO; 0) dl/’/t <— /

M,
for t € (O,to).

(x — o)t

2(to — 1)

p

H + Plwosto) Plaosto) ML

Theorem 5.7. Let My be compact, convex and embedded. Then, every limit flow
obtained by the type-I rescaling 5.1 around a type-1 singularity, up to a rotation in

R™1, must be either the skrinking spheres (S’&%)Te(im’o) or one of the shrinking
cylinders (S?TW X R"*m)Te(_w 0) for 0 <m < n.

Proof. Let g € R"! be arbitrary. For t € [0, T), define the monotonicity quantity

Oy m)(t) = /M P (uo,1) (@, ) dpuy’ -

The monotonicity formula, Theorem 5.4, yields
0¢O (20,1 (t) <0 (5.9)
for t € (0,T). Hence, the monotonicity quantity is monotonically decreasing and
strictly positive, so that the limit
Jim ©zo,1) (1)
exists and for any sequence (t;)reny with ¢ & T for k — oo,
tli_{l% Q(mO,T) (t) = kl;ngo @(zo,T) (k). (5.10)

For k € N,y = A\p(z — x9) € R"™ and 7 = A} (t — T) € [ay, 0), the backward heat
kernel rescales according to
1 1
‘I’(o,o)(y,T) = TZ‘I)(IMO//\;C,TJrO/Ai)(%t) = E(I)(aco,T)(wyt)-
Let 7 € (—00,0) and kg € N so that 7 € [y, 0) for k > kg. Let (Ag)ren be a sequence

of positive real numbers with A\, — oo for £ — co. We rescale the flow according
to the type-I rescaling 5.1 with respect to the sequence (Ag)ren and consider the
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rescaled flow (Mf)TE[ak,O). We receive a factor of A} from the scaling behaviour of
the area element, and a factor of 1/A} from the scaling behaviour of the backward
heat kernel. Hence, the monotonicity quantity translates, for ¢, := T + 7/ )\i, by

O (20,1) (tk) :/ @ (2,1 (T, tr) dpii,

tr

— [ @0 duii, = 0 (7).
Mk

i

Corollary 4.4 implies that there exist pg € M™, xo € R and (pg, t)ren with
X(pr,te) >z and  |A(pg, t)| = HJ\I/ﬁXM("tk)‘ — 00

for k — oco. We rescale according to Definition 5.1 with respect to o and (pg, tx)ken
and consider the rescaled embeddings X : M™ x [a,0) — R*"L. We apply the
monotonicity formula 5.4 and estimate similar to [Bak10, Proposition 6.6] or [Cool1,
Proposition 5.8],

2

T2 1
Y n k k
0= /Tl /Mf Hi + —27 ®0.0) dpzdr < @(070)(71) - @(0,0)(72)
T T
= O(0,7) (T + é) = O(z0,1) (T + );) (5.11)
k k
for all k£ > kg. Since
Ti
T+5—T

Ak

for kK — oo and ¢ = 1,2, and by the existence of the limit (5.10), the right-
hand side of (5.11) converges to 0 for k& — oco. By Theorem 5.3, the sequence

((Mf) r— ) pen converges smoothly along a subsequence and on compact subsets

of R*"*! to a smooth flow (M-?o)re[nﬂ]'

there exists a ko € N so that for all k > ko, M* N B(0) can be parametrized over
M2 N Bgr(0). That is, there exist embeddings Yy : M2° N Br(0) — R**! with

M} 1 Bg(0) = Yi(M;® 1 B(0))

and Y3 — id for k — oco. For 7 € |11, 73], Fatou’s lemma, Lemma A.4, implies
2

Let R > 0. By the smooth convergence,

1
o Yy
0=1 f H + Z—| $o) dul
im in B kT "oy | 20.0) i
vk |2
= liminf/ Hy, + —£-| g )y/det(DY},) dx
k— o0 MSOQBR(O) —2T7 ’

2
@(070) Vi det(DYk)> dx

YL
2/ lim inf ’Hk+ —k_
M=NBg(0) k—o0 —2T7

YL P
_ / Hoo + =2 | B(0)\/det(DYsc) do
M2NBg(0)
l 2
_27— ) s
M2=NBRr(0)
Thus also
T2 12
/ / Ho, + 2| @) dufdr =0.
71 J M>NBg(0) =27

Since R > 0 was chosen arbitrarily, we deduce

/TQ/ 2
T1 >

1

Y
H, + *—
+ —27

@(0’0) d,l,t?dT =0.
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Since the convergence is smooth, and sending 7 — —oo and 75 — 0 yields
2

=0

yl

—27
for every T € (—00,0) and every y € M2°.

OO+

For the area estimate, let again be R > 0 and 7 € (—00,0). Then there exists
again ko € N so that 7 € [ag,0) and

T- >

20 2
TR

for all k > kg. Like in Corollary 1.5,
oy Br) =~ [ Hdu
M;NBgr

the area is decreasing locally also locally. By (5.9), the monotonicity quantity is
decreasing in time and we can estimate with the definition of the backward heat
kernel and the behaviour of the area of the hypersurfaces,

/ (I)(O,O) (ya T) dlu’;cl;r
M¥NBRg(0)

S/ D (20,1) (LT )\2> dpp_r )z
]\/[T77/>\£QBR(QU())
T n
< / @ (20,1 (1177 2) Ao
MT/QOBR(IO)

1 / e < “T - I0|2 > d n
= xp| —— | du
Am(T = T/2))™% Jrty 0 Br (o) 4T -1T/2) e
< C(n, T)wpo(Mrj2 N Br(zo)) < C(n, T) g (Mo N Br(2o))

Like before, Fatou’s lemma implies
lim inf/ 0,0) dpi. »
k=00 JpknBR(0) ’

= lim Hlf/ (13(070) v/ det(DYy) dx
M=NBr(0)

k—o0
> / lim inf (®(0,0)y/det(DY) ) da
M2NBr(0) k=00
Z/ ‘I)(o,o) dligo,r
M=NBRr(0)
Furthermore,
/ D (0.0) (s 7) i,
M"CI'TBR(O)
lyl?
9 ) g
47r7' /MOOOBR exp( 47 ) Moo
R2
d
47TT /MDQOBR eXp( —4T> #’oo T
— e =) a0 0 Bal)
_(—47T’7')n/2 B —p Hoo,r R
so that

p" (M2 N Br(0)) < C(n, T, 7)pug (Mo N Br(xo)) exp(i)
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holds for all 7 € (—o0,0).

For every fixed 7 € (—00,0), by Theorem 5.3, |A| is not identically zero and
[V™A| < Cy, for every m € N. Theorem 2.4 yields that

M>® —=S§m % RP—m

T = O amr
where 0 < m < n. Since the flow is smooth, the claim follows. O

5.2. Gaussian density.

Definition 5.8 (Gaussian density, [Sch17d, p. 26]). We define the Gaussian density
ratios of the flow M = (M;),eo0, ) with respect to (x,t) as

OM. (& 60)i= [ By duie.
M, _ .2
Note that the monotonicity formula implies that ©(M, (x,t),r) is increasing in 7.
In case the flow is only defined locally as in Remark 5.6 we set

O (M, (z,t),r) := / Spﬁw,t)q)(x»t) dpy 2.
2

t—r

Hence as r N\, 0, the limit exists, so we can set

O(M, (z,t)) == 11{1% O(M, (z,t),7),

called the Gaussian density of M at (x,t).

Remark 5.9. Let M = (M;).c[o,r) be a smooth mean curvature flow. We say that
(z,t) is a smooth point of the flow, if in a space-time neighbourhood of (z, t) the flow
M is smooth. One can show that at a smooth point (z,t) in the support of M one
has ©(M, (z,t)) = 1, and thus at each singular point ©® > 1. Similarly, any point
reached by the flow has ©® > 1. Furthoermore, if M is a smooth mean curvature
flow such that (z,t) is a smooth point of the flow, then that @(M, (x,t),r) =1 for
all » > 0 if and only if M is a multiplicity one plane containing (z,t).

Theorem 5.10 (Local regularity, White [Whi05, Theorem 1.1] see also [Eck04,
Theorem 5.6]). There exist universal constants € > 0 and C' < oo with the following
property: If M is a smooth mean curvature flow of hypersurfaces in a parabolic ball
P(xo,t0,2(n + 1)p) with

sup O°(M, (z,t),r) <1+e
(z,t)EP(z0,to,T)

for some r € (0, p), then

2 1Q

sup |A[ <
P(zo,to,7/2)

Proof. See [HK17, Theorem C.1]. Suppose the assertion fails. Then there exists a
sequence of smooth flows M7 in P(0,0,2(n + 1)p;) for some p; > 1 such that

. 1
sup 0PI (M7, (x,t),1) <1+ =
(z,t)€P(0,0,1) J

but such that there are points (z;,t;) € P(0,0,1/2) with |A|(z;,t;) > j. We can

find (.fj,lfj) S P(0,0,3/4) with >\j = |A‘(fj,tj) >j such that

sup |A|(z,t) <2 (5.12)
(m,t)EP(Ej ,Ej ,j/l())\j)

by the following technique, called point selection. Fix j. If (x?, tg) = (z;,t;) already
satisfies (5.12) with A} = |A[(z},t9), we are done. Otherwise, there is a point
(z},t7) € P(x3,19,5/10A)) with A} = |A|(x], ;) > 2)A). If (x7,t]) satisfies (5.12),



32 FRIEDERIKE DITTBERNER

we are done. Otherwise, there is a point (23,¢3) € P(xj,t},j/10\}) with \¥ =
|A|(23,t3) > 2X], etc.. Note that

L + ! 1+ L + ! + < 3

2 10)\9 2 4 7 4

By smoothness, the iteration terminates after a finite number of steps, and the
last point of the iteration lies in P(0,0,3/4) and satisfies (5.12). Now let M7 be
the flows obtained by shifting (z;,t;) to the origin and parabolically rescaling by
Aj = |Al(x),t;) — oo. Since |A[(0,0) = 1 and suppg /10y |Al < 2, we can pass
smoothly to a nonflat global limit, with

. 1
1S 0N (ML (0,0),4) < 145 1

where p; = A\jp; = 0o. On the other hand, like in the proof of Theorem 5.7, the
limit is a flat plane. This is a contradiction. ([
6. TypP-II SINGULARITIES

The rescaling technique for type-II singularities was introduced in [Ham95a,
Proof of Theorem 16.4] for Ricci flow, and applied to type-II singularities of MCF
in [HS99b, p. 11].

Definition 6.1 (Type-II rescaling). Let (pg, tx)ren be a sequence in M™ x [0, T —
1/k] with

1 1
H?(peyte) [T — ==t ) = H?>(p,t) ([T —~—t
(i ) ( k k) (p.t) M (0,71 /K] ( 1) ( k ))
for each k € N. We set

1
)\i = |A|2(pk,tk), Qf = 7)\%15]6 and Tk = /\i (T — E — tk> .

and define the rescaled embeddings Xy : M™ x [ag, Tx] — R? by

Xi(p,7) == Ag <X <p, te + é) - X(pk,tk)) -

Lemma 6.2 (Properties of the type-II rescaling, [HS99b, Lemma 4.3]). Let X :

M"x(0,T) — R? be a solution of (MCF) with T < co. For the type-II rescaling 6.1
in case of a type-II singularity,

A — 00, Qp — —00 and Ty — o0
for k — oco. Moreover,
X1(0,0) =0 and |Ax]2(0,0) = 1
for every k € N and for any € > 0 and any T > 0, there exists a ko € N such that

max _|Ax]? <1+¢
M”X[ak,T]

for all k > k.

Proof. We follow the lines of [HS99b, Lemma 4.3]. By definition, X;(0,0) =
Xk(pk,O) =0 and

1
|A[?(0,0) = p|A|2(pk,tk) =1
3

for each K € N. Let m > 0 be arbitrary. By the definition (4.4) of a type-I1I
singularity, there exist ¢ € [0,T) and p € M™ so that

AP(p.8)(T — ) > 2m.
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We fix £ and choose ko € N, so that £ < T —1/k and |A|*(p,t)/k < m for all k > k.
Then

1 1
AP0 (T = 1) = ARG - - ARG > m
and Definition 6.1 yields
1 1
T~ [P Geot) (T -~ 1) 2 14200 (T - = 1) > m.

Since m was chosen arbitrarily, it follows that T, — oo and thus also Ay =
|A|?(pg,tr) — oo for k — oo. Since t; N T, we conclude that oy = —)\%tk — —00
for k — oo. For the curvature estimate, it again follows from Definition 6.1 that

A2 (p, 1) <T - % - t) < |AP(pr, te) (T - % - tk) — 7 (6.1)

for all p e M", t € [0,T —1/k] and k € N. Let £ > 0 and T > 0 be given. Since
Ty — oo, there exists again ky € N so that, for all kK > ky, T < T} and

0< T <
= <c.
T, —T
For 7 € [ay,T), it is t := tx + 7/X2 € [0,T — 1/k), and we can use the scaling
behaviour of the curvature and (6.1) to estimate

1 T T—1/k—ty
Akl (p, 7) Ai" X)) ST —1/k— (tx + 7/A2)

S B S P S
_Tk—T_Tk—T_ Tk—T

for all p € M™ and k > k. Hence,

max _|Agl? <14¢
M"X[ak,T]

for all k& > max{ko, k1 }. O

Theorem 6.3. Let (M;)icpo,ry be a smooth, immersed solution of (MCF) with
T < co. For the type-1I rescaling 6.1 in case of a type-1I singularity, there exists a
sequence of rescaled immersions

((Mf)Te[ak,Tk])keN

that converges for k — oo along a subsequence, uniformly and smoothly on compact
subsets of R and R™™ to a mazimal, smooth limit solution (M2°),cr which satisfies
again (MCF) and

0 e Mg* and sup |[Aso| = |4 (0)] = 1.
RxR

Moreover, if (M¢)ieo,1) s embedded, then (M2°),c(—oc,0) 15 embedded.

T

Proof. The convergence follows from Theorem 4.10. Lemma 6.2 implies 0 € Mg®
and |A(0)] =1 and that for any € > 0 and any T > 0,

sup Ao < 1+e¢.

Rx (—00,T]

Sending T — oo and ¢ — 0 yields
sup [Asc] < 1= 40 (0)].
RxR

By Proposition 1.9, MF* is embedded for all K € N and all T € [ag, Tx]. Furthermore,
sin(e)

di (1) > min{dk(ak), s } > min{A,d(0),sin(e)}

is uniformly bounded in k for 7 € R. O
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Remark 6.4. In the following chapters, we will show that the eternal solution
obtained in Theorem 6.3 is convex and translating.
7. CONVEX HYPERSURFACES

Theorem 7.1 (Huisken, [Hui84, Corollary 4.2]). Assume My = Xo(M) closed and
convez, i.e. hy; = 0. Then h;j > 0 for allt € (0,T).

Proof. By Lemma 1.4 and Simons’ identity (A.1),

Othij = Ahiy — 2Hg " hiphj + | AP hij .
Use Theorem D.5 for m;; = hj;, uF =0 and bi; = —2Hhilglmhmj + | A2 hi;. O
Corollary 7.2. There is some € > 0 such that h;; = eHg;; holds on M x (0,T).

Theorem 7.3 (Huisken, [Hui84, Theorem 4.3]). If eHg;; = hi; = BHg;, and
H >0 att =0 for some constants 0 < ¢ < 1/n < B < 1, then this remains so on
(0,7).

Proof. To prove the first inequality, we want to apply Theorem D.5 with

hij 2 m
mi; = % — €05, uk = Egklle, bij = QEHhij — 2himg lhlj .
With this choice the evolution equation in Theorem D.5 is satisfied since
hij 1
8t (I‘IJ) = ﬁ (HAhU — hijAhij) — thmgmlhmj
and
hi; 1 2 hi;
A <HJ> = 57z (HAi; = hijAhij) - ﬁglekHVl (HJ) :

It remains to check that b;; is nonnegative on the null-eigenvectors of m;;. Assume
that, for some vector v,
hij’UJ = EHUZ* .
Then we derive
bijvivj — Qthij'Uivj — thmnghljvin = 2€2H2|’U‘2 — 2€2H2|'U|2 =0.
That the second inequality remains true follows in the same way after reversing
signs. O

Theorem 7.4 (Huisken [Hui84]). Letn > 2 and My C R™™! be closed, conver and
embedded. Then the mean curvature flow (My)icjo,r)y starting at Mo converges to a
round point.

Proof. See [Manll, Theorem 3.4.10]. Let T be the maximal time of smooth ex-
istence of the mean curvature flow of an n-dimensional convex hypersurface. By
Theorems 1.10, 7.1 and 7.3, we have that after any positive time H > 0 and there
exists € > 0, independent of time, such that h;; = eHg;;. If at time T" we have a
type-1I singularity, we get an unbounded, eternal convex blow-up limit flow with
H > 0, using Hamilton’s procedure. By the strong maximum principle, actually
H > 0 for every time (otherwise H = 0, but this and the convexity would imply
that the limit flow is simply a fixed hyperplane) and the condition h;; > Hg;;
passes to the limit. Then, by Theorem 3.6, all the hypersurfaces of the limit flow
are compact, in contradiction with the unboundedness, hence type-II singularities
cannot develop. Dealing with type-I singularities, any blow-up limit is embedded,
strictly convex and compact, again by this theorem. Hence, by Theorem 5.7 it can
be only the sphere S™. This implies that the full sequence of rescaled hypersur-
faces converges in C*° to such sphere. Finally, as the blow-up limit is unique and
compact, the original hypersurface shrinks to a point in finite time. O
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Remark 7.5 (Exponential convergence, [Hui84, Lemma 10.6]). Consider the nor-
malized flow

where 1 is chosen so that

for all t € [0,T). By choosing
t(t)y= [ ¢*(r)dr,
we get that g;; = ngij, H= W H,
—1 f]ﬁ[t H2 d:ﬂ’ h
YO = e =
n [y, dfi n

and
X =97 29,X = —Hi+—X
n
for ¢ € [0,00). Then there exist constants § > 0 and C, C,, < oo such that

7 7 —6t
Hmax - Hmin S Ce ’

3|

il”ﬁ — < 08_657

Gij

max ‘V’”A’ < C’me_6t
M

for all m > 0.

8. HAMILTON’S HARNACK INEQUALITY

We follow [Urb91, Section 2], [And94] and [Sch17d, Chapter 4]. For convex hy-
persurfaces, the initial value problem (MCF) can be reduced to an initial value
problem for the support function. Let M be a smooth, closed, stricly convex hy-
persurface (A is positive definite everywhere). Recall the Gauss map v : M™ — S™,
unit normal ¥ : M"™ — R"*! and the Weingarten map S : TM™ — TM"™ which
gives the rate of change in the direction of the normal along the surface with

S(v) == dX " (Dax@wP) = dX (dw).

The second fundamental form A is the symmetric tensor given by the normal com-
ponent of the connection on R**1.

A(u,v) = —(d*X (v,w), D) = —(Dgx (v)ydX (w),v)
= (dX(w), Dax(v)?) = g(w, S(v))
for all v,w € TM™, where dX : TM™ — R""!. The eigenvalues A\ ... A, of S
are called the principal curvatures. Without loss of generality, we may assume that

M encloses the origin. All information about the hypersurface is contained in the
support function s : M™ — R where

s(p) == (w(p), X(p)) -
For strictly convex hypersurfaces v is a global diffeomorphism, and we can parame-
trise the hypersurface by X : v(M™) C S — R"*! where

X(2) =X '(2))
for all z € v(M™). We will consider the support function

s(2) = (2, X(2)). (8.1)
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In the following, Indetify z with z. If the support function is known, the hypersur-
face is given as the boundary of the convex region

ﬂ {y eR™ | (y,2) < s(z)} )

zESn
Let 0;; be the metric and V be the gradient on S™. Differentiating (8.1) we obtain
Vis = (ViX,2) + (X,V;2) = (X, V,;2),
since V; X (z) is tangential to M at X(z), and z is the normal to M at X (z). Since
(z,2z) = 1, we obtain )
(2,Viz) =0
and writing @ij = @i@j, we obtain
(2,Vi2) = —(V;2,V2) = —04j ,
Hence,
X =(X,2)2+ 0% (X,V;2)V;z
=52+ 09V,;sVjz =52+ Vs
From this, we conclude at a fixed point
@Zf( = @isz + s@iz + @kisakl@lz + @ksakl@liz
= @,sz + s@iz + @kisakl@lz — @ksaklaliz

= s@iz + ﬁkiSO'kl@lZ

and
@in = @jsﬁzz — 802 + @kijsakl@lz — @kisoklaljz
= @js@rz — 80452 + @kijSJkl@lZ - @ijsz
so that
iLij = —<@in7Z> = SO’ij + @ijs
and
gij = SQUij + 28@1']‘8 + @iksakl@jls = ilikaklilgj
as well as
hl =g hix = @' o1ma™ hix = oia

where here (a¥);; = ((hij)ij)fl and
A = F = oy
We consider the Weingarten map S : T'S™ — T'S™ with
S(v) :==dX " Y(d,D).

Since di = id, we have S~ = dX. We define

S7L(v) = (6*V2s + sid)(v) = Vo (Vs) + sid(v) =: A(v) (8.2)
so that

g(u,v) = gijviwj = Bikaklﬁljviwj = kadgnaklolnd;’viwj

= Ukmd;”d?viwj =o(A(u), A(v)).

The great advantage of the support function is that it allows us to consider a fam-
ily of convex hypersurfaces simply as an evolving scalar function defined on the
sphere. This makes things much simpler than the more abstract framework al-

lowing arbitrary parametrizations, since we no longer have different descriptions of
the same hypersurface. Furthermore, the identification with the sphere provides a
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time-independent metric and connection, which vastly simplifies many calculations,
including especially those presented here for the proof of the Harnack inequalities.

For the remainder of this section, we consider a familiy of embeddigns X : M"™ x
[0,7) — R™"! that solve the initial value problem

{atxm 1) = —F(S,1), v(p,1))v(p.1) for (p,t) € M" X 0.T) g g
X(-,0) = Xo on M". .

where F' is such that the equation is parabolic and invariant under diffeomorphisms
of M™ and translations in space and time. We want to reduce (8.3) to an initial
value problem for the support function. Let X be a solution of (8.3), and suppose
that for each ¢t € [0,T), X(-,t) is a parametrization of a smooth, closed, uniformly
convex hypersurface M;. We define a new parametrization X (-, t) by

X(zt) = X (v (2):t) -
Then ) )
X =0, X0, (v + 0 X =0, X0, (v ") — Fz
so that
Oys = (0,X,2) = —F

since 0; X is tangential. This proves the following theorem:

Theorem 8.1 (Andrews, [And94, Theorem 3.1]). Let X : M™ x [0,T) — R"*! be
a family of strictly convex immersions satisfying (8.3). Then

Os(z,t) = ©(A[s(z,1)], 2) on S™ x [0,T)
(8.4)
s(+,0) = s onS.
where id is the identity matriz, so is the support function of My,
P(A) = —tr, A! and A=0"V2s+ids.

The expression (8.2) allows us to use the support function to calculate functions
of the curvature of a hypersurface. We can define ® : U C T*S™ — R in terms of
X by

d(X)=-F(XY
for all positive definite maps X. Furthermore, ®(A) : T*S™ — TS™ is given by

O(A)(B) = 0r|r—o®(A+1B)
and ®(A) : TS" @ T*S" — TS™ @ T*S" by
B(A)(B,C) = 0,|r—0P(A+rC)(B).

We call ® concave (convex), if

®(A)(B,B) < (2) 0
for all A, B € T*S™. We call & a-concave (a-convex), if

® = signa B,

where B is positive and concave (convex), a € R. a-concavity (-convexity) is
equivalent to

.. .. B B
b =a(a—-1)B2B®B+aB*'B < (=)< ;e (8.5)

(These conditions become considerably more complicated when written in terms
of the principal curvatures and a speed function F'. For example, concavity of @,
becomes F'(X,X)+2F(X oS 10X)>0.)
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Lemma 8.2 (Andrews, [And94, Theorem 3.6 and Lemma 5.1]). The following
evolution equations hold under the Gauss map parametrization of the flow (8.3):

8t(@25 +s0) = V2 + bo
WA =0*V20 + ®id
O D(A) = D(A)(0*V3D) + d(A)(id)® (8.6)
D2D(A) = P(A)(OrA, 0 A) + D(A) (07 V20,D) + D(A)(id)d, D . (8.7)
Proof. The first equation follows simply by differentiating (8.4), since the metric o
and connection V are independent of time. The second follows immediately from
this. Since ® depends only on A, we have 9;® = ®(9p.A) which implies the third
equation. By (8.6),
920 = 8, (cb(a*@?@) + <i>(id)<1>)
= 3(0,.A,0*V2D) + B(6*V?9,0) + (9, A,1d)® + d(id) 9,
= O(9, A, 0,A) + D(0*V20,P) + D(id)9, . O

Lemma 8.3 (Andrews, [And94, Lemma 3.10]). Let f : M™ x [0,T) — R and
f:S"%x[0,T) = R be related by

fw(p.t),t) = f(p.1)
for allp e M™ and t € [0,T). Then
O f =0f + ATHVF,Vf).
Proof. Differentiating yields
Onf = Ouf + 0., fOo' = 0uf + 0y, fO., (V1) 0, F
= Ouf + gjkOps fal 0, F = 0y f + aij0,i fO,i F
where (a'?);; = ((hij)ij)fl. O

Theorem 8.4 (Andrews, [And94, Theorem 5.6]). Let X be a strictly convex solution
to (8.3).

(i) If @ is a-concave for 0 < oo < 1 (a-convex for o > 1), then

o _>)o0.

Ot o =

for allt €]0,T).
(i) If ®, is positive and concave (convez), then

sup (0 log @) is decreasing (increasing).
S§n

Proof. We prove the concave cases. For claim (ii), let ® be concave and set R :=
O¢ log ®. Then

P o2

2 2
O:R =0, (85) e (02)

as well as

s o (0@ VoD 90V
VR—V((I))— i
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and

- - (VoD 9,0V
2 t® Ot
ViR =V ( o 2 >
_ Ve Voeeve  §0evie N L D2 (V)
) P2 P2 3
_ Ve VReVE 50V
R ® P2

By (8.6) and (8.7),

QR =~ (cb(aﬁ?at@) + B(1d)9,® + (0, A, OtA)) _R (cb(a*@?@) + <i>(id)<1>)

o o
= *v72 z ¥ * [ v L ¥ * =2
< &(c*V2R) + (I)@(a (Voo VR))+ 538" (0.0%®))
1. . R /. e .
+ g dlda0 - (@(a V20) + <I>(1d)<I>>

= &(c"V2R) + %cb(a*(% ® @R)) .

The strong parabolic maximum principle, Theorem D.3, implies (ii), since the first
term is an elliptic operator, and the second a gradient term. For claim (i), let ® be
a-concave with a < 1 and set

P
R:=10,® + 2=
a—1
which is negative at ¢ = 0. Then
20— 1
OR = tO2d + "~ 9,®
a—1
as well as
~ ~ « ~
VR=tVdd+ ——VOo
a—1
and

V2R = tV20,® + —~ V2.
a—1
By (8.6), (8.7) and (8.5),

20— 1
a —0,0

R =t (B(0"V20,0) + B(d)0,D + B(D,A,0,4)) +

< $(0*V2R) — Llé(a*@%b) + td(id)9, @
-
a—1 20 — 1
ad a—1
. =) o .o ..
= $(0"VR) + —— (cp(ld)@ - atcb) + 1d(id) 9, ®

+ 22 (B(8,4))2 + 0, @

200 — 1
4T h,
a—1

= &(0"V?R) + —2-b(id)® + 1d(id)0,D + t%(atq))z L0,

a—1
t——(8,®)?
+ ozq)(t )+

a—1
ad
o —

ad

= ®(c*V?R) + ( —

9P + <i>(id)) (t8t<1> ;o0 )

= ®(c*V3R) + ( 1at<1> + <i>(id)) R.

The weak parabolic maximum principle, Theorem D.2, implies that R stays negative
as long as the solution exists. |
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This calculation can easily be transferred to the standard parametrization, by
writing the various quantities in terms of the metric and connection on the hy-
persurface. This is most easily done by considering the change in the evolution
equations coming from the modified parametrization. Here we denote by A~! the
map inverse to A.

Corollary 8.5 (Andrews, [And94, Corollary 5.11]). Let X be a strictly convex
solution of 0; X = —Fv.

(i) If @ is a-concave for a < 1 (a-convex for o > 1), then

o _ - (<)0.

F-ANYNVFEVF)+ —
Oy (VF,V )+(a71)t_

for allt €10,T).
(i) If @ is positive and concave (convex), then

sup (9, log |F| — FA Y (Vlog|F|,Vlog |F|)) s decreasing (increasing).
Mn

Proof. The claim results from Lemma 8.3 and Theorem 8.4. ]

Theorem 8.6 (Andrews, [And94, Theorem 5.17]). Let X be a strictly convez solu-
tion of 0, X = —Fv.The following inequalities apply in the standard parametrization
for the cases described, for any points p1,ps € M™, any times 0 < t; <ts < T, and
any curve vy between (p1,t1) and (p2,t2).

(i) If @ is a-concave, a < 0, then

F(pa,t2) (n)““‘“‘” ( 1/ . )
— 2 > = expl —— | FT A(Y,y)dt ) .
Florty) > \b P71/, (% 9)

(i) If @ is a-convex, o > 1, then

F(pa, t2) (m)“““” < 1/ o )
N exp| == [ |F|7 A, %) dt ) .
Fionty) > \ i p{—3 7| A, Y)

(iti) If ® is conver and positive, then

F(pa, t2) ! THA(,
ﬁ ZeXp(—C(t2 _tl))exp<—4/yF A(’Y,’V) dt) ’

where C = limy o sup zn (8;log |[F| — FA™!(Vlog |F|, Vg |F|))..
Proof. Along a curve 7,
D;logF = 0,log F + (¥,Vl1og F) .
Furthermore,
(4, VF) < A™\(VE,VF) + 1A, )
so that, by Corollary 8.5(i),

DslogF > FA ! (Vlog F,Vlog F) + (¥, Vlog F) — ﬁ

1 «
> - FLARA) —
2 -7 (4:) R

Integrating along v yields claim (i). For claim (ii),
1 1
DylogF > C — - F7'A(Y,4) > =C = 2 F ' A(4,9)

respectively,

1
DilogF < C + ZF”A(#,&) . O
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Remark 8.7. For the mean curvature flow, we have

®(A) = —H(S)=—H(A™ ") =sign(—1) (H_l(A_l))

-1

Since h;pa’* = 67 and a*' = g*™m¢'%a,,,, we have
i g-g ,

Oashij = —hikhjiOa,, 0" = —hixhjgt™g' 0505 = —heh)}

and thus )
OansH = g% h?h?
and
8U«aﬁ (%MH — g’L] hfh’]:gkahf + gzj h?h?hzgkﬁ -
This yields
8%51771 = fH72gijh?h§3 '

Since

0,

as~y

H,

OanpOas, H ' =2H ?8,,,H0,, H— H %9,
the eigenvectors {v;} of ViH —! are the eigenvectors of the Weingarten map S, and
VAH " (vi, 0,03, 05) = 2H 2 g(S(03), S (v3)) (9(S(v3), S(w03)) — Hg(S(vi), v3)))

=2H 3k} (k; — H)
is negativ for convex flows. Hence, ® is (—1)-concave.

Theorem 8.8 (Hamilton [Ham95b, Theorem 1.3]). Let X : M" x (—o00,T) — R*H1
be an ancient mean curvature flow of a complete, strictly convex hypersurface with
bounded second fundamental form at every time and such that H takes its mazimum
in space and time. Then, X is a translating flow.

Proof. Define

H
Z=0,H+— — A"YVH,VH
at +2(t—t0) (v av )
then
15kl 2 2 2 2
(8 — AV Z =29 Ty Jy + (AP — —— ) Z> (AP - — ) Z
t—to t —to
where L
e =V3H + Hh% — a*"V HV  hyp + ——5
Jiw = V2 H + Hh?, — a*"V,HV k+2(t—t0)

By Corollary 8.5 and Remark 8.7, Z > 0. On an eternal solution where H attains
its maximum in space and time, we can send tg — —oo and obtain Z = 0 at the
maximum. By the strong maximum principle, Z = 0 so that

O:H = A_l(VH, VH).
Since - -
gik _ gkléf _ gklhﬂa” _ h?a”
and, by Codazzi and a hjj, = &},
aille _ ailgkmvlhkm _ ailgkmvkhlm
= —ailgkmhlshmjvkasj = —hﬁvkaij,
we obtain
0=—a"V,HV;H + AH + H|AJ?
— (V4" ViH + a7, H + HAL) B
Consider the vector
V =a"V;HV;X + Hv .
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Since
ViV; X = (0:0; X, V)V = —hjpv
and _ -
Vv =hV;X = g"h;,V; X
as well as a* hj, = d,, we obtain
ViV = V3aV,HV,; X + d¥VyV,HV; X 4+ d 'V, HV;V; X + ViHv + HVv
— (Vra" Vil + a9V H 4 HAL) VX + (ViH = Vi) v =0,
On the other hand, at a fixed point so that the Christoffel symbols vanish,
ora = —a*al'Oihyy = —a™a? (Vi VI H — Hg™ himhis)
= —aikaleleH + Hg” .

and
00;H = 0; ("0 HOH) = —Hh.O,H + ™0, HO,0,H
as well as
0:0;X = —0;(Hv) = —0;Hv — Hh} o, X
and

o =g70;H0; X
Together, we obtain,
OV = 0,0, HO; X + a"0,0;H0; X + " 0;H,0; X + 0, Hv + HOww
= (Hg"0,H — a'™*a/'V NV HO; H — a" Hh\o H + ' a0, H0,0,H

+Hg"0;H) 0;X — a” O; HHh;0p X + (™ 0, HOH — a7 0;HO;H) v = 0.
Hence V is a constant vectorfield in space and time. Let ¢; € (—o00,T) and ¢ :
M™ — M™ be a diffeomorphism with ¢(-,¢;) = id and

O =—aV;HV; X

and X (p,t) = X(é(p,t),t). By Theorem 1.3, X (M™,t) = X (¢(M",t),t) = M; and

X(p,t) — X(p,11) = X(3(p.1),8) — X(p.t1) = / (DX, 0:6) + 0, X dr

t1
t
= —/ aV;HV;X + Hvdr = —(t — t;)V
ty

so that My = M;, — (t — t1)V and the surfaces move by translation in direction
of —V. O
9. NONCOLLAPSING

We follow the lines of [And12].

Definition 9.1 (a-noncollapsed). A mean convex hypersurface M bounding an
open region 2 in R™ is a-noncollapsed (on the scale of the mean curvature) if for
every x € M there is an open ball B of radius o/ H(z) contained in Q with z € 9B.

Note that every compact, smooth, strictly mean convex domain is a-Andrews
for some a > 0.

Given a hypersurface M = X(M™), define Z : M™ x M™ — R by

H(p)
Z(p,q) = =~ 1X(0) = X (@) + (X (9) = X(p), v())
Then we have the following characterization:
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Lemma 9.2 (Andrews [And12, Proposition 2]). M is a-noncollapsed if and only
if Z(p,q) > 0 for all p,q € M".

Proof. A ball in Q of radius «/H (p) with X(p) as a boundary point must have

centre at the point

z(p) = X(p) — %V(p%

The statement that this ball is contained in 2 is equivalent to the statement that
no points of M are of distance less than «/H (p) from z, that is

a )2 _5Z(p.q)

0<|X(g) — () - (

H(p) H(p)
for all p,qg € M™. Since H > 0 this is equivalent to the statement that Z > 0
everywhere. If Z > 0, then by the same equation as above, yields the claim. O

Theorem 9.3 (Andrews [And12, Theorem 3]). Let M™ be a compact manifold, and
X : M"x[0,T) = R"! evolve by (MCF) with H > 0. If My is a-noncollapsed for
some a > 0, then My a-noncollapsed for every t € [0,T).

Proof. By PLemma 9.2, the claim is equivalent to the statement that the function
Z:M"™x M"™ x[0,T) — R with

H(p,t)
2
is nonnegative everywhere provided that it is nonnegative on M"™ x M™ x {0}. We

prove this using the maximum principle. For convenience we denote H, = H(p,t)
and v, = v(p,t) an define

Z(p,q.t) = 1X(q,t) — X(q,t)]* + a(X(q,t) — X(p, 1), v(p,1))

X(qat) _X(pat)
d

d=1X(q,t) — X(p,t)] and w=
so that
H
Z = d27p + ad{w,v,) .

We compute the first and second derivatives of Z, with respect to some choices of
local normal coordinates {p'} near p and {¢"} near p. Then

09,2 = de<w7 8‘1'i> + a<8Q'L' ) V;D> (9.1)

Op Z = —dH,(w,0p,) + d;v,,in + adht gl (w, 0y, (9.2)
04:04;Z = Hp(0y;, Og;) — dHPhgj (w,vg) — ahgj<’/q’ Vp)
8%617]'2 = —Hy(9,,, 8173') + dVy, Hy(w, 0y,) + O‘h?kggl<aqm8pz> (9.4)
Op,0p; Z = H(0p,, Op;) — AV p, Hp(w, Oy, ) + dH, I3 (w, v,)

d2
= dVp, Hy(w, Op,) + ?vpivijp
+adV,, hfkg’;l<w, Op,) — iy — adhfkgkth(w, Vp) (9.5)

d2
0Z = dH,(w,—Hyv, + Hyv,) + 5 (AH, + Hp|A4,%)
+a(—Hyvq+ Hpvp,vp) + ad{w, VHy) . (9.6)
Equation (9.1) yields

dH, 1 dH 1
= (0, —Lw) - =0,7Z = {0, —Lw—-=V,Z).
0 <6q1,,1/p + " w> aﬁq% <8q,l,up+ 5 w qu >



44 FRIEDERIKE DITTBERNER

Thus, the vector v, + (dHp,/a)w—(1/a)V,Z is normal to the hypersurface at X (q),
and is a multiple of v,. Furthermore,
dH 1

l/p —+ pr — aqu

2

dH,\* _dH, 1 , 2 dH,
:1+( - ) +2 o <I/p,’w>+£|qu‘ - ViZ,vy,+ w

(67
H,\? H H 1
=1+ dH, +2d PN Z—-d*=L )+ = |V, Z)?
« « 2 a?

(0%

2 dH, 1 2 )
- <qu, vy + —Lw — quZ> - 51V42]

HP 1 2

where we used the fact that V,Z is in the tangent space at X (g), hence orthogonal
to vy + (dHp/a)w — (1/a)V,Z. This yields

dH, 1 H 1
up+apwquZ—Uq\/l+2a§Za2VqZ|2- (9.7)

We compute at a point (p,q), p # ¢q. Choose local coordinates so that {9,,} are
othronormal, {9,,} are othronormal and 8,, = 9,, for i = 1,...,n — 1. Thus 9,,
and J,, are coplanar with v, and v,. With (9.3), (9.4), (9.5) and (9.6),

LZ = (at - géjaQiaqg' - g;f)japiapj - 29ik jl<6pkvaqz>apiaqg') Z

p 94
d? 9
= dH,(w, —Hyv, + Hyv,) + 5 (AH, + Hy|A, %)
+ o{—Hgvg + Hpvp, vp) + ad(w, VH,)
—nH, +dH,Hy(w,vq) + aHy(ve, vp)
2
—nH, + 2d{w, VH,) — dH}(w,v,) — %APHP — ad(w, VHp)
+ aH)p + ad{w, Vp>|Ap‘2
+ 2(” - I)Hp + 2<6pn78qn>2Hp - 2dg;kggl<8pwam><w7 611j>vpin
— 2« (Hp - hﬁn + <apn7aQn>2hﬁn)
= Z|Ap|2 +2d <w, Opy, — <apkaaqz>9¢lzjaqj>g£ivpin
—2(H, — ahl,) (1 - <6pn78Qn>2) .
We observe that
Op, = (O0p,,+04,,)0q, + (Op,, Vq)Vq ,
so that
<610n7'jq> = <6pn76%,><6€1n7yq> + <810n7'/q>

and
1= <8pnaaqn>2 + <apn>’/q>2-
At a critical point of Z, we obtain fron (9.1) that (w,d,,) = a/(dH,)(0y,,Vp)-
Hence,
(w,0p,) = (w,8g,) = 0
fori=1,...,n—1 and
(w0,00,) = g5 Ou, )

Furthermore, by (9.2),

2
Vi Hy = = (w, Hy0y, — ahi,, ;" 0p,)

d
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and by (9.7),
dH H,
Vp+7pw:uq\/1+2a—§Z:: PVq,
so that I
ap (w, 8pn> = ,0<an 8pn> .
Hence,
2d <w7 apk - <8pk ) aqz >g(l;jaq]‘ > glgivpi HP
= 4(Hp —ahh,) (w, Op, — <8pn’ 8‘1n>8qn> (w, 8pn> .
so that
LZ = |Ap|2Z +2(H, — ah},,)Q
where

Q =2 <w7apn - <8pn’ 8qn>8q”> <w’ 8pn> - <6pn7UQ>2
= 2(0p,,, Vq){w, V) (w,0p, ) — <6pn7’/q>2
= <8pn ? '/q> <2<w7 8pn>w - apn ’ Vq)

1 dH
= ;<8Pn"/q> <2<w76pn>w = Op,,,Vp + apw>
1 2dH, dH
= ;<8pn”/q><6pn,w> (2(1/1,, w> —+ Tp — ap>
g PH
= T@<6P,Lauq><8pn7w> (Oéd<l/p, w> + 5 p)
2H
= a2 G2

Since the coefficient of Z is a smooth function which is bounded on (M x M)\
{p = ¢}, the maximum principle implies that Z remains nonnegative if initially
nonnegative (Z is zero on the diagonal {p = ¢}). O

Remark 9.4 (Andrews [And12, Remark]). We made no use of the sign assumption
on «, so the result also holds for negative a. This proves “exterior noncollapsing”,
ie the hypersurface remains outside the ball of radius |«|/H, which touches the
tangent plane at p on the exterior.

10. CONVEXITY ESTIMATES

We follow the lines of [HK17]. In this chapter, we will also work with the evolv-
ing family {Q}ier where 9Q; = M;. We will also consider families of possibly
noncompact closed domains {0y C U}ier in an open set U C R™*1. For the mean
curvature flow, time scales like distance squared.

Definition 10.1 (a-Andrews condition). A smooth mean curvature flow M is
a-Andrews if every time slice is a-noncollapsed.

Remark 10.2. By Theorem 9.3, if the initial set My is compact and a-Andrews,
then so is the whole flow M.

Theorem 10.3 (Half-space convergence, Haslhofer—Kleiner [HK17, Theorem 2.1]).
Let Ty > 0 and {M7} be a sequence of a-Andrews flows such that:
(i) For every r < oo, the flow M7 is defined in P(0,Ty,r) and there exists t; so
that B,.(0) C Q{j for j sufficiently large.
(ii) The origin 0 € Rt lies in Mg for every j.
(iii) Let K C {x"*1 < 0} be compact, then K C Qé for j sufficiently large.
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Then O7 converges smoothly on compact subsets of R" T x (—o0,Ty| to the static
plane {x"T1 =0} x (—o0,Tp).

Remark 10.4. (1) Assumption (i) can be weakend by: For every r < oo,
the flow M/ is defined in P(0,Ty,r) for j sufficiently large. For a proof,
see [HK17, Appendix D].
(2) Assumption (1) is satisfied for every blowup sequence.
(3) The case t; < To — R? is of course allowed. In fact, it follows from the
assertion of the theorem that t; — —oo.

Proof of Theorem 10.3. We begin by proving convergence to a half-space in a weak
sense. For R € (0,00) and d € R, let

Bf, := Br((—R +d)en+1)

be the closed ball of radius R tangent to the horizontal hyperplane {z"™1 = d} at
the point de,,+1. If we evolve 9B% under (MCF) and start at time

to=—— + 5 +e,
0 n 2n

for € > 0, then R(t) = \/R? —2n(t —to) (see Example 1.1()) and OB, has left
the upper half-space {z"*1 > 0} at t = €. Since 0 € Mg for all j, E; is not
contained in ). Furthermore, the comparison principle, Theorem 1.8, yields that
Eé cannot be contained in the interior of Qg for any t € [to,0]. Let By assumption
(i) and (iii), By condition (iii), for large j we can find d; < d such that Ede has first
interior contact with M; at some point z;, where

(xj,ent1) <d, |z;*<ty and liminf(z;, e, 1) >0.
J— 00

Hence the mean curvature satisfies

H(xﬁt) <

==

Since Mtj satisfies the a-Andrews condition, there is a closed ball ERJ. with radius
R; > aR/n making exterior contact with Mg at x;. As d and R are arbitrary, this
implies that for any ¢; < 0 and any compact subset V' C {z"T! > 0}, for large
j the time slice Mtj is disjoint from V for all ¢ > t;. Likewise, for any to < 0
and any compact subset W C {z"*! < 0}, the time slice Mtj contains W for all
t € [t2,Tp] and large j because Mtj2 will contain a ball whose forward evolution
under (MCF) contains W at any time ¢ € [t2, Tp]. This means that the sequence of
mean curvature flows { M7} converges in the pointed Hausdorff topology to a static
plane in R™"*! x (—c0, Tp).

In general, let U C R™"! be an open set and {K, C U},>; is a smooth family
of mean convex domains such that {0K,} foliates U \ int(K;). Let K/ D K; be
a closed domain that agrees with K; outside a compact smooth domain V' C U.
Let v be the vectorfield in U \ int(K}) defined by the outward unit normals of the
foliation. Since divv = H > 0 we obtain with the area formula, Theorem A.1,

to
pr(OK' NV) —u"(0K;NV) = / O u"(OK, NV)dr
t

to
:/ / divud,u”dT:/ Hdu"™ > 0.
t Jor,.nv (K'\K¢)NV

Hence, K; has the following one-sided minimization property:

0K, NV|<|oK'nV]|.
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Now in our situation, one can take as a comparison domain
K =Qlu (Br(z) N {znq1 < 63)

for 6 > 0 small. Hence, we get for every € > 0, every time ¢t < Tp, and every ball
B, (z) centered on the hyperplane {z"*! = 0} that

(MY O By (@) < " (Br(w) 0 {ngr = 03) + p" (0B, () 1 {0 < g < 0})
< (1+e)w,r™

for j large enough. Let (z,t) € P(xo,to,r). Then

/ . q)(."c,t) (y7 t— 7'2) dlj’?;'rz
]\/Igiyw2ﬁBr(w)

- ! o JE=u Y
(At = (=) /MthzﬂBr(a:) p( 4(t—(t—r2))>d“tr2

avei
M (MtﬂBT(x))S(l—H:)wn: (1+¢) <(+2).
(4mr2)n/2 (4m)n/2 I'(n+1/2)4n/2
By Thorem 5.10 with » — oo, we have smooth convergence to a plane. O

The next theorem ensures that sequences of a-Andrews flows have subsequences
that converge locally to smooth mean curvature flows provided we normalize the
mean curvature at a single point.

Theorem 10.5 (Curvature estimate, Haslhofer—Kleiner [HK17, Theorem 1.8]). For
all o > 0 there exist p = p(a) > 0 and C; = Cj(a) < oo, I € NU {0}, with the
following property: If M is an a-Andrews flow in a parabolic ball P(x,t,r) centered
at x € My with H(z,t) < 1/r, then M is smooth in the parabolic ball P(x,t, pr)

and
o

sup |le’ S fr-lT

P(z,t,pr)
Proof. We will first show that there exists a p’ > 0 such that the estimate holds
for I = 0 with Cy = 1/p’. Suppose this does not hold. Then there are sequences of
a-Andrews flows {M7};cn, points {p; € My, };en and scales {r;};en such that M7
is defined in P(x;,t;,7;), some time slice contains B, (z;) and H(z;,t;) < 1/r;,
but ) '

sup |VlA| > EA

P(zj,t5,r5/9) Ty

for every j € N. After parabolically rescaling according to

J J?
("E7t)+_> 7(I7Ij)772(t7tj)
Tj Tj
and applying an isometry, we obtain a new sequence {Mﬂ } of a-Andrews flows such

that:

(a) M is defined in P(0,0, ) and some time slice contains B;(0).

(b) 0 € M and the outward unit normal of M at (0,0) is €, 1.

(c) HMg(O7O) <1/j—0asj— occ.

(d) SuPp(0,0,1) |A| > 1.

By (a), (b), (¢) and the a-Andrews condition, {M7} satisfies assumptions (i),
(ii) and (iii) of Theorem 10.3, and hence it converges smoothly on compact sub-
sets of spacetime to a static half-space; this contradicts (d). Finally, by Ecker—
Huisken [EH91], see also [Eck04, Propositions 3.21 and 3.22], we get uniform bounds
on all scale-invariant derivatives of A in P(x,t, p'r/2). By setting p = p’/2 the claim
follows. ]
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Corollary 10.6 (Huisken—Sinestrari [HS09, Theorem 1.6], see also [HK17, Corol-
lary 2.6]). Let M be a mean convex flow where the initial time slice is compact.
Then

|VA| < CH?
for a constant C < oo depending only on the initial time slice.
Proposition 10.7 (White, [Whi03, Proposition A.4]). Let M be mean convez. If

k1/H attains a minimum value v at (p,b), then k1/H is a nonnegative constant in
a spacetime neighborhood of (p,b).

Proof. Let v = v'0; be a time-parallel vectorfield, that is
_ 1 .. g _
o' = —59” (8tgjk)vk = Hg”hjkvk = Hh%vk )
Since 9¢(g;jv'v7) = 0, the length of v is constant in time. Then
O(A(v,v)) = 0 (hijv'v?) = (Ophij)v'v? + 2k (9" )v?
= (Ahi]‘ + |A‘2h” — 2Hh§hjk)vi1}j — ththilej
= (A + [AP)hiy)v'?
and
Oy (Hg(v,v)) = (0:H)g(v,v) = (AH +|A]PH)g(v,v)
= ((A+|A])(Hg))(v,0).
Define the tensor m := A —~yHg, which is positive semidefinite (by choice of v) and
satisfies
D (m(v,v)) = (Am)(v,0) + [APm(v,v) > (Am)(v, ).
Note that the first eigenvalue A\ = k1 — vH of m is everywhere nonnegative and
is 0 at (p,b). Thus by Theorem D.8, X is identically 0. Fix a time ¢. Then M™
is locally a metric product Ny x Ns. Let vy and v, be unit eigenvectors of A
(at some given point) with eigenvalues k1 and k,, respectively, and assume that
k1 < 0. Then k, > 0 since H > 0. Thus v; and v, will be horizontal and
vertical, respectively, with respect to the product structure Ni x N,. Moreover,
by Theorem D.8, (v1, V,,v,) = 0 for every vector field w. The sectional curvature
determined by v; and v, is given by
(R(v1, vp)vn, v1)
g(v1, 'Ul)g(vm vn) - g(vl, Un)z
= <VU1 an’Un — anvmvn — V[v1,vn]vna ’U1> = 0 .

Since k,, is positive, k1 must vanish. O

R1Rn = K(Uhvn) =

The next theorem says that a boundary point (z,t) in an a-Andrews flow has
almost positive definite second fundamental form as long as the flow has had a
chance to evolve over a portion of spacetime that is large compared with the scale
given by H(x,t).

Theorem 10.8 (Convexity estimate, Haslhofer—Kleiner [HK17, Theorem 1.9]). For
all a,e > 0 there exists n = n(e, o) < 0o such that if M is an a-Andrews flow in a
parabolic ball P(x,t,nr) centered at x € My with H(x,t) < 1/r, then

€

t) > ——.
Hl(xv)— r

Proof. Fix a > 0 and let 704 (2,t) be the radius of the ball touching M; at = from
the outside. The a-Andrews condition implies
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Hence
1 H(x,t 1
a(a,1) > DL .
Tout (T, 1) o ar
so that the assertion holds for € = 1/a. Let €9 < 1/a be the infimum of the €’s
for which it holds, and suppose g9 > 0. It follows that there is a sequence { M7} of

a-Andrews flows, where for all j,

(0,0) e M, H(0,00 <1 and M7 is defined in P(0,0, )

but
K1 — —go for j — o00.

After passing to a subsequence, { M7} converges smoothly to a mean curvature
flow M in the parabolic ball P(0,0,p), where p = p(a) is the quantity from
Theorem 10.5. Then for M> we have k1(0,0) = —¢o and thus H(0,0) = 1. By
continuity, H > 1/2 in P(0,0,r) for some r € (0, p). Furthermore, we have x,/H >
—¢eo everywhere in P(0,0,r7). This is because every (x,t) € M> N P(0,0,7) is a
limit of a sequence {(z;,t;) € M7} and for every € > ¢, if n = (e, ), then M7 is
defined in P(z;,t;,n/H (z;,t;)) for large j, which implies that the ratio k1 /H (z;,t;)
is bounded below by —e. Thus, in the parabolic ball P(0, 0, ), the ratio k1 /H attains
a negative minimum &g at (0,0). This contradicts Proposition 10.7. ]

As an immediate consequence of Theorem 10.8, we obtain the original versions
of the convexity estimate:

Corollary 10.9 (Huisken—Sinestrari [HS99a, Theorem 1.4}, see also [HK17, Corol-
lary 2.10]). Let M be a smooth mean convex flow, where the initial time slice is
compact. Then for all € > 0 there is an Hy < oo such that if H(xz,t) > Hy then
k1/H(z,t) > —¢.

Proposition 10.10 (Huisken—Sinestrari, [HS99b, Theorem 4.1]). If My has non-
negative mean curvature, then any limiting flow of a type-II singularity has convex
surfaces M2°, T € R.. Furthermore, either M is a strictly convex translating
soliton or (up to rigid motion) M = R"™* x N., where N, is a k-dimensional
strictly convex translating soliton in RF1.

Proof. We follow the lines of [Manl1, Remark 2.5.6 and Proposition 4.2.7]. Around
a singularity, we can send ¢ — 0 in Corollary 10.9. This yields the convexity of
the limit flow. For the splitting, we observe that the Weingarten operator satisfies
% =0 on (Mp®);cr and _ 4 4

O0-h; = ARl + \A|2h;- .
Let 7 € R. By the strong maximum priciple for 2-tensors, Theorem D.7, there
exists 0(7) > 0 so that

rank S(7) = rank A(7) =: m(7) € N
on (7,7 + ) and

m(m) = ﬁli rank A > i/l[lo[: rank A = m(m)
f 2

for 79 > 71. Hence m(7) is nondecreasing and there exists 79 € R, so that the global
minimum
m := minm(7)
TER
is attained at some point of M7¥, that is,
m(7) =m
for all 7 < 75. Assume that m < n, then

ker A, (1) C T, M:°
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is (n —m)-dimensional at every point x € M2°. Let v € ker A, and «y be a geodesic
in M2° starting at x in direction of v. Then

n+l . ..
Vi A=V + ARy =0

so that v remains always in ker A and is also a geodesic in R™"*!. Hence, for every
7 < 79 the hypersurface M2 contains an (n — m)-dimensional affine subspace of
R™*1. By Theorem D.7, ker A(7) is invariant by parallel transport and time for all
7 < 79, so that is the same affine subspace for all 7 < 7y. Thus,

M =ker A(T) x N,

splits as a product of an (n —m)-dimensional flat part and a family of either strictly
convex, m-dimensional hypersurfaces N, C R™*+! evolving by (MCF). Since A is
bounded on (M2°),cg, the flow is unique (see Remark 1.7) and the above holds also
for every T > 9.

To show that N is a translating solution, by Theorem 7.3, H and |A| are com-

parable quantities, that is, there exists a time-independent constant € so that
elA| < H < +/n|A]

for t € [0, T). Hence, we can modify the type-II rescaling (see Definition 6.1) by
replacing |A]? with H? and get the same estimates on the second fundamental form
and its covariant derivatives. We then still get an eternal smooth limit flow, com-
plete with bounded curvature and its covariant derivatives, with the only difference
that this time it is the mean curvature H which gets a global maximum equal to
one at time zero. Now Theorem 8.8 yields that M is translating. O

11. CYLINDRICAL ESTIMATES

The cylindrical estimate says, roughly speaking, that near a boundary point in
a uniformly k-convex flow, either the flow is uniformly (k — 1)-convex or it is close
to a shrinking round (k — 1)-cylinder R*=! x §"~* provided the flow exists in a
subset of backward spacetime that is large compared to the scale given by the mean
curvature. To state this precisely, we say that an a-Andrews flow is e-close to a
shrinking round I-cylinder (or cylindrical domain) R! x S"+1=! near (zg, o) if after
applying the parabolic rescaling

(z,t) = Mz — 20), \2(t — t0)),

where A\ = H(zo,t), and a rotation it becomes e-close in the C''/¢l-norm on
P(0,0,1/¢) to the standard shrinking I-cylinder with H(0,0) = 1. See Huisken and
Sinestrari [HS09, Theorem 1.5].

Theorem 11.1 (Cylindrical estimate, Haslhofer—Kleiner [HK17, Theorem 1.15]).
Let o, B,e > 0. Let M be an a-Andrews flow that is uniformly k-convex in the
sense that k1 + -+ + ki, > BH. Let © € M;. Then there exists § = é(e,a, ) > 0
such that, if M is defined in P(z,t, (0H (z,t))~1) and
K1+ + Kp—1
H

then M is e-close to a shrinking round (k — 1)-cylinder R*=1 x S*=F near (x,t).

(z,t) <

APPENDIX A. HYPERSURFACES IN R*+!

A topological space is called Hausdorff space if for any two distinct points there
exists a neighbourhood of each which is disjoint from the neighbourhood of the
other. A topological space M™ is called locally Fuclidean of dimension n, if M™
can be covered with open sets where every set is homeomorphic to an open subset
of R™. A pair (U,¢), where U C M™ is open and ¢ : U — ¢(U) C R" is a
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homeomorphism, is called chard of M™. A collection A of chards is called atlas of
M™ if
Mrc |J U.
(U,p)eA
Two chards (U, ) and (V,) are called C*-compatible, k > 1, if

Yo tipUNV)—=p(UNV)

is a C*-diffeomorphism. An atlas is called of class C*, if each of its chards are
Ck-compatible. If A is a C*-atlas, there exists exactly one maximal C*-atlas A
with A C Ap; it contains all chards which are C* compatible with the chards of
A. A differentiable (C*-)structure on M™ is a maximal C*-atlas on M™. A lo-
cal Euclidean Hausdorff space with a differentiable structure is called differentiable
manifold.

Let N"t™ be a differentiable manifold. A subset M™ C N™t™ n.m > 1, is
called n-dimensional C*-submanifold of N™*™ if for every x € M™ there exists an
open neighbourhood U € N™*™ and a C* diffeomorphism ¢ : U — p(U) C R*t™
with
Such an M™ owns a C*-atlas, that is

A:={(UnNM,olunm)| where (U, ¢) as above} .

Then, M™ is locally Euclidean of dimension m and

(Ylvan) o (elunnm) ™t =¥ o o™ Hgnx{opnpwny) € CF

for two diffeomorphisms ¢ and .

A topological manifold with boundary is a Hausdorff space in which every point
has a neighborhood homeomorphic to an open subset of the Euclidean half-space
R? = {(z1,...,2,) € R" |z, > 0}. The boundary OM™ of M™ is the set of all
points p € M™ such that (¢(p))™ = 0 for all chards (U, ¢) of M™. If M™ is a mani-
fold with boundary, then the interior int M™ = M™ \ 9M™ is a manifold (without
boundary) of dimension n and boundary OM™ is a manifold (without boundary) of
dimension n — 1.

Let M™ be an abstract, smooth, compact, n-dimensional manifold without bound-

ary and X a smooth immersion (rank DX = n) with
X M™ — R™,
We call M := X(M"™) a hypersurface in R"*™. For all p € M™ and v,w € T,M",
the embedding X induces an isomorphism
dX, : T,M"™ = Tx M,
and the first fundamental form or metric g, : T, M™ x T,M"™ — R with
gp(v, ) := (dXp(v), dXp(w))gn+m .
Let (U, ¢;)icr be an atlas of M™ and
0; = aii =dp (e;) € TM"

then the matrix entries of the metric are

gij = 9(0:,0;) = (dX(8;),dX (9;))gntm = (0: X, 0; X)pntm = 0apdiX*0; X"
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for 1 < a, 8 <n+m. We define by (gij)ij the coordinate dependent inverse of the

matrix (gi;):; and the measure
dp™ = y/det(gs;) dp.

Okgij = (0k0: X, 0;X) + (0; X, 0, 0; X)

Observe that

and
09" = —g"" 9% O gpq -
The corresponding Levi—Cevita connection on M™ is given by

Vow =X ((DaxdX () ") .

Here D is the standard connection in R"*™, and T denotes the tangential compo-
nent with respect to M, that is the orthogonal projection onto dX (p)(T,M") =
T'x (p)M. The connection can be evaluated in coordinates in terms of the Christoffel
symbols Ffj defined by

Vo,0; = T¥0k,
where I‘fj is explicitly given by We define the Christoffel symbols by
I = g"(0,0;X,0,X) .
Here and in the following, we sum over repeated indices. Then,
IY0RX = (0,0;X,0.X)0,.X .

At a fixed point, we can choose a coordinate system such that Ffj = 0. We calculate

0= 6} = k(9" g1) = 9" Okgii + 9j10kg" ,

so that
g = 4" 9" O gim = —g" 9" O (DX, 0 X))
— g (DX, 0 X) + (01X, 0O X)) = " T, — 9" Ty,

Being in a Levi-Cevita connection the Lie bracket [-, -] is given by

[v,w] = Vyw — Vv = (v(uk) - w()\k)) O -
The tangential gradient of a function f € C'(M) is given by

VM = 0,50, .
The tangential divergence divys : T,M™ — R is given by
divar v = ¢"9(0;v,0; X )gntm .

For the embedding vector X, we therefore have

divyr X = ¢7(0;X,0; X )gnim = g7 gi;j = .
For w =df = g—idpi, we obtain the Hessian of the function f

(Hessr f)(v,w) := (V2 f) (v,w),
or in coordinates
ViV, f = (Hessar f)(0;,0;) = 0;0;f — T};0c f -

The Laplace—Beltrami operator Ay : C?(M™) — C°(M™) is defined as

1

A = —
mf Totog

05 (V/det gua 90, ) = divar (VY f) = gV, f
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We define the second fundamental form A, : T,M" x T,M"™ — (TX(,,)M)J' by

m

Ap(v,w) == (Dgx,)dXp(w),vi(p)) vi(p)
k=1

= Z <pr(w), Dpr(v)Vk(p)> vi(p)
k=1

where {vy }1<k<m is an orthonormal frame for (TM)*. In coordinates {piti<i<n,
A= Ap(0:,0;) = > _(0:iX,0,up) v
k=1

The mean curvature vector H : M — (T M) is the trace of the second fundamental
form

m m
H:= —giinj = —gij Z <8iX, ajllk> Vi = — Zdiv(yk)uk .
k=1 k=1
We calculate that

ApuX = g7 (0:0;X —TH0X) = g7 Y (0:0;X,vi) v
k=1

m
= —gij Z <(9ZX, 6juk> Vi = H.
k=1
For a submanifold ¥ of M, the mean curvature vector is given by

m

HE = — ZdiVE(Vk)Vk — diVZ(VE)VZ s
k=1

where vy, is the unit co-normal of . Since vy tangential to M,

<HE,VE> = —diVE 120>}
and on X,
AsX = gd (0:0;,X —TH0pX)
—Zg (0;0; X, vi) vy, + g (3:0;X,vs) vy = Hy .
Form =1,

A(v,w) = A(v,w)v,
where v is the outward pointing unit normal to M and A : TM™ x TM"™ — R is
given by

A(U,U}) <DdX(v)dX( > <dX DdX(v)V> .
where v is the outward pointing unit normal to M. In coordinates,
hij = A(@l, 8J) = —<6i6jX, I/> = (&-X, 8jl/> .
Let Ay < A9 <--- <\, be the eigenvalues of A, that is
his€il = Megis
for eigenvectors {x € TM and k = 1,...,n. The Weingarten operator S : TM"™ —
TM™ is given by
S(v) = dX " (Dax(wV)

so that

A(T), U)) = g(”? S(w)) )
where in coordinates, ' _

hl = glkhkj
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and the Weingarten equations by
v =hl9;X .
The norm of the second fundamental form is given by
AP = g™ g hyihi; = W hij
and the mean curvature vector is given by
H=-¢"hjv=—-Hv,
where we define the mean curvature H of M as the trace of the second fundamental
form with N
H=g¢"hy; =divyv.
The Gauss curvature is given by
K :=det(h;j;).

We have the Gauss formula

ViV;X = 0;0;X —T§0,X = —hj;v
which as before leads to Ay, X = H. More useful identities are the Codazzi equa-
tions in R**+!

Vihij — Vihie =T by, — Tl hyj

and Simons’ identity

Ahij = V;V;H + Hhiphf — |APhg; . (A1)
We define the Riemannian curvature tensor by

R(u,v)w = V,Vyw — V,Vyw — Vi, w.

In coordinates that is

k. Tk Tk k m _ 1k m
Ry o= Vil = VI + 15,1 =TI

Moreover, we set

Rklij = gkr lrij
and define the Ricci tensor by

Ry = Rijrg”
and the scalar curvature by

R = Rijgij .
The Gauss equation are
Rijri = hikhji — hithjg .
The sectional curvature in direction of two linearly independent vectors v and w is
given by
(R(v, w)w,v)

g(U, v)g(uu w) —g(v, w)
Theorem A.1 (First variation of the area formula, see [Sim83, p. 51]). Let M C
R" ™ be a smooth, compact, n-dimensional hypersurface with boundary. Let U C
R"! be a open and bounded such that M C U. Let ¢ : U x (—1,1) = U be a one-
parameter family of C%-diffeomorphisms. Set My := ¢(M,t) and v(p) := 0;¢p(p,0).
Then

K(v,w) =

3

at|t:0,LLn(Mt):/ divpyvdu™.
M

Theorem A.2 (Divergence theorem, see [Sim83, p. 43], [DHTK10, p. 304], [Eck04,
p. 116]). Let M C R"*! be a smooth, compact, n-dimensional manifold with bound-
ary. Let v be a C'-vectorfield on M. Then

/ divpyvdu™ = —/ (v, Hpp)gn+1 du™ —|—/ (v, vons)mnsr dp™ "t
M M oM
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Theorem A.3 (Rademacher’s theorem, see [Fed69, Theorem 3.1.6]). Let U C R™
be open and f : U — R™ be Lipschitz continuous. Then f is differentiable almost
everywhere in U.

Lemma A.4 (Fatou’s lemma, [AE06, Theorem 3.7]). Let (,0,du) be a measure
space and let (f; : 2 — [0,00))ien be a sequence of non-negative integrable functions
such that liminf; o [, fi dpu < co. Then

i—00

/ liminf f; dp < liminf/ fidu.
Q 71— 00 9]

APPENDIX B. FROBENIUS' THEOREM

Let M™ be a smooth manifold and v a smooth vector field on M™. The integral
curve of v is a curve 7 : (a,b) — M™ such that

V() = v(v(¥))

for all t € (a,b). (The existence of 7 is given by Picard-Lindelof.) If v is non-
vanishing, then its integral curves are connected, immersed 1-dimensional submani-
folds of M™.

A k-dimensional (tangent) distribution D on M™ is a choice of k-dimensional
linear subspaces D, C T, M" at each point p € M", where

D= || D,cTM".
peEM™

If D is a k-dimensional distribution, then we can find a vector field v; such that
vi(p) € D, for all p in some neighborhood U C M™. We can continue (possi-
bly shrinking the neighborhood) until we have vector fields vy,...,vx such that
v1(p), ..., vk(p) form a basis for D, at each p € U.

An immersed submanifold N C M™ is an integral manifold of the distribution D
if ,N = D, for all p € N, and D is integrable if each point of M™ there exists an
integral manifold of D.

A distribution D is called involutable if [v,w] € D for all v,w € D.

A parametrization ¢ : U C M™ — R" is flat for D if ¢(U) C R™ is a product of
connected open sets in R* x R”~* and for each p € U, D, is spanned by precisely
the first k basis vector fields. A distribution D is completely integrable if there exists
a flat parametrization for D in a neighborhood of every point of M™.

Theorem B.1 (Frobenius’ theorem). Let D be a distribution on a smooth manifold
M™. Then, D is completely integrable if and only if D is involutable.

A k-dimensional foliation F on M™ is a collection of disjoint, connected, im-
mersed k-dimensional submanifolds N of M™ (the leaves of the foliation) such that

(i) the union of the leaves is all of M™, i.e., M™ = | |y N, and

(ii) there is a parametrization ¢ around each p € U C M™ such that ¢(U) is
a product of connected open sets in RF x R”* and each leaf N intersects
U in the empty set or a countable union of k-dimensional slices of the form

Tr+1 = Ck+15---,Tm = Cm-

Theorem B.2 (Alternate Frobenius). If D is an involutive distribution on M™,
then the collection of all mazximal connected integral manifolds N of D forms a
foliation of M™.

APPENDIX C. SARD’S THEOREM

Section copied from [Sch05, Section 3]. See also [BJ73].
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Definition C.1. Let f : M — N differentiable. A point p € M is called regular,
if the differential of f in p is surjektiv. A point ¢ € N is called regular value, if
f~1(q) consists of regular points. Non-regular points or values are called singular
or critical.

We want to prove the following theorem.

Theorem C.2 (Sard’s theorem). Let M™ and N™ be differentiable manifolds with
a countable basis of their topology. The critical set S of a C* function f: M — N
consists of those points at which the differential df : TM — TN has rank less than
n as a linear transformation. If k > max{n —m + 1,1}, then the image of S has
Lebesgue measure zero as a subset of N.

Corollary C.3. Let M™ be a differentiable manifold and f : M™ — R™ a diffen-
rentiable. Then f~1(x) C M™ is a differentiable submanifold of co-dimension n for
almost every x € R™.

Remark C.4. The set f~1(x) can be empty. Sard’s theorem also holds for maps
f:R* - RP, f € C¥ with k¥ > max{n — p,0} and manifolds with according
dimensions.

Definition C.5. A subset C' C R"™ is of measure zero, if for every € > 0 there exists
a sequence (W;);en of cubes in R™ with

CCUWZ» and Z'Wi|<5‘
i€N i€N
Remark C.6. (i) The countable set of zero sets is again a zero set.

(ii) One obtains an equivalent definition for open oder closed cubes or balls.

Lemma C.7. Let U C R™ be open and C C U of measure zero. Let f: U — R™
be Lipschitz. Then f(C) has measure zero.

Proof. Exercise. 0

Definition C.8. A subset C of a differentiable manifold has measure zero, if for
every chard h: U — U’ C R™ the set h(C' NU) C R™ is of measure zero.

Remark C.9. The assumption of differentiability is important here, since zero sets
are not necessarily maintained under homeomorphisms. Since a manifold owns a
countable basis of the topologie, there exists an atlas with countably many chards.
It is sufficient to apply the definition for such chards. Well-definedness follows, since
zero sets are maintained under differentiable chard changes and countable unions.

Lemma C.10. An open covering of the interval [0,1] by subintervals contains a
countable cover [0,1] = U§:1 I; with 25:1 |Z;] < 2.

Proof. Due to the compactness, there exists a finite subcover. Choose one where
no interval can be left out without loosing the covering property. Let the intervals

I;, 5 =1,...,k be numbered so that with I; = (aj,b;) always holds a; < a1,
7 =1,...,k —1. Minimality and covering property imply a; < a;+1 < b; < a;12.
So that

Z (bi —ai) = Z (@iy1 —ai) + Z (bi — aiy1)
< Z (@ig1 —a;) + Z (@ig1 —aiy1) <2,

where we used that we have telecope sums in the end. O

Theorem C.11 (Fubini). Let R} := {z € R"|2" =t} C R". Let C C R™ be
compact and C, = CNR} " be of measure zero in RP ™1 =2 R*~! for allt € R. Then
C' is of measure zero in R™.
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Proof. Since the property of being of measure zero is maintained under countable
unions, we can assume that C' C R"~! x [0,1]. For ¢ € [0,1], C; is of measure zero
in R"™! x {t}. Let £ > 0 and W} be a cover of C; by open cubes with Y, [W/| < e.
Define W; := J, W/ identify these with subsets of R"~*. The function |z" — {| is
for fixed ¢ € [0,1] on C' continuous, vanishes exactly on C; und attains a positive
minimum in the compact set C'\ (W} x [0,1]), which we call a. It follows

{zeC:|z" —t|<a} CW, x I},

where I = (t — o, t + ) and |J, I* = [0, 1]. Choose a subcover of [0, 1] among the
intervals I{* with ), |I{*] < 2. Observe that a = a(t;). It holds

cclwi xrn,
ti

where 7 is the index of the cube and we take the union over cuboids. Moreover,

S OIWE X IR < 2.

by

Sending € — 0 yields the lemma. ]

Remark C.12. The requirement that C' is compact, can be weakened as follows:
C is a countable union of compact sets, that each suffice the assumptions of the
theorem. This is fulfilled by closed and open sets (which cannot be zero sets), for
images of these set under continuous maps, countable union und finite intersections
of these.

Proof of Theorem C.2. After introducing maps it is sufficient to show: Let U C R™
be open, f : U — RP smooth and D C U be the set of critical points of f, then
f(D) C RP has measure zero.

We prove by induction over n. In case n = 0, R™ is a point. So, f(U) is at most
a point and has measure zero. Assume the claim is true for the case n—1. We proof
the case n. Let D; C U be the set of all points points, in which the partial derivative
of order < i vanish. We obtain the decreasing sequence of relatively closed sets

D>DyD>DDyD....

We claim that

(i) f(D\ Dy) is of measure zero,

(ii) f(D;\ Diy1) is of measure zero,

(iii) for k big enough, f(Dy) is of measure zero.

We observe, that (iii) is neccessary, since also the points, in which all derivatives
vanish, can be captured. By Remark C.12, all sets occuring in (i)—(iii) can be used.
Moreover, it is sufficient to prove that every point in D \ Dy resp. D; \ D1 resp.
Dy, has a neighbourhood V', so that f(V N (D\ Dy)) resp. f(VN(D;\ D;y1)) resp.
f(V N Dy) are of measure zero. The claim then follows, since the countable union
of zero set is again a zero set.

Proof of (i): Assume, that p > 2, since for p = 1 we already have D = D;. Let
2o € D\ Dj. Since z¢ ¢ D1, there exists a partial derivative that is not vanishing
in zg, w.l.o.g. 01 f # 0. Define h: U — R" by

hix=(x'. .., 2") = (f(x), 2% ... 2").

Then h is not singular in xy. Hence there exists a neighbourhood V' of xg, so that
h:V — h(V) = V'is a diffeomorphism. Define g := f oh~!. In a neighbourhood
of h(z), g is of the form

g: (24 ..., 2") (zl,g2(z),...,g”(z)).
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The hyperplane {z |2 = t} is (locally) mapped into the hyperplane {y|y' = t}.
Define
g {ty xRNV — {t} x RP7!

als restriction of g. We have
1 0
Dg, = .

Hence a point in ({t} x R*~1) N V" is critical for g if and only if it is for g;. By the
induction assumption the set of critical values of g; is of measure zero in {t} x RP~1,
Since g maps entsprechende hyperplanes onto itself, the set of critical values of g
also has a intersection of measure zero with the hyperplane {y|y' = t}. By Fubini,
Theorem C.11, the critical values of g have measure zero. Since f and g only differ
by an diffeomorphism, also the criticalen values of f have measure zero. This holds
locally, as long as 01 f # 0. This proves (i).

Proof of (ii): We argument similarly as in the proof of (i). Let zg € Dy \ Djyy1.
Then there exist a non-vanishing (k + 1)-st derivative, w.l.o.g.
8k+1 fl
Oxldzvr ... Dxvr (z0) 0.
Assume, that this holds in a neighbourhood V" of zy. Define w: V' — R by
ok f1
w = 7‘]6(300) #0.

T Qxvr ... Qxvk

It holds w(x) = 0, %w(x) # 0. The map

hi:x— (w(x),2?,...,2")
defines a diffeomorphism h : V' — V' = h(V). w and therefore all k-th derivatives
of f! vanish at most for z = xo. Hence
h(DpyNV)cC {0} x Rt CcR".
Define
g:foh .V S RP
and
go: {0} xRNV = RP,
By the induction assumption, the set of critical values of gy has measure zero.
Let € h(Dy NV). Then all derivatives of g up to order k vanish there. Since
h(Dr N V) C {0} x R¥=1, g is defined there and has vanishing derivatives up to

order k. In particular, all first derivatives vanish there as well and thus we are
dealing with critical points of gy. Hence

(gooh)(DrNV) = (goh)(DrNV)=f(DrNV)

has measure zero.

Proof of (iii): The set U ist countable union of cubes. Let W C U be a cube
with side length @ < 1 and let & > n — 1. It is sufficient to show, that f(W N Dy)
is of measure zero. By Taylor it holds that

f(z+h)= f(z) + R(z,h)
with
|R(x, h)| < c|h|**!

for x € D N W and = + h € W, where the constant ¢ only depends on f and W.
We devide W in r™ cubes with side length a/r, » € N. If W; is a cube of this
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partitioning, which contains a point z € Dy, then every other point in W; can be
described as z + h with |h| < /na/r. Hence with Taylor

\/ﬁa>k+1 |

r

Fla+h) - f() < (

So that f(W7) is contained in a cube with side length

(n) (ﬁf .

r

There are at most ™ such cubes with points in Dg. The summed up volumes of
the images of these cubes in RP are at most

p(k+1)
et (L28) g = v,

r

Since n — p(k + 1) < 0, this will get arbitrary small for r — oo. |

Corollary C.13 (Brown). Let M and N be (finite dimensional) manifolds. Let
f:+ M — N be a differentiable (C*°-)maps. Then all the regular values of f lay
dense in N.

We want to derive Brouwer’s fixed point theorem from Sard’s theorem.

Definition C.14. Let A C B. A retraction is a continuous map f : B — A, so
that f|a = id, that is, f(z) = z for all z € A.

Theorem C.15. There exists no retraction of By(0) C R™ on S"~1.

Proof. We prove the claim by contradiction. Let f : B1(0) — S"~! be a retraction.
Show at first, that then there also exists a C'*°-retraction of B;(0) on S"~!: We
find a retraction g, that is close to 9B (0) of the class C*, e.g.,

g<x>={f(|3?) for § <la| <1

f(2z) for 0 < |z| < 3.

Mollification in the interior gives a C°°-retraction. Hence we may assume that
f € C>(By(0),S"71). By Corollary C.13 there exists a regular value y € S*~! of
f. Hence the compact set f~!(y) is a one-dimensional submanifold (first in B;(0),
but since we can mollify f, also up to the boundary, since f is after construction
constant on radial line segments close to S*~1). Hence f~!(y) is a one-dimensional
manifold with boundary in B;(0), whose boundary is a subset of S*~! = 9B;. It
holds that y € f~1(y), since f is a retraction. Let V be the component of f~!(y)
that contains y. Then V is a one-dimensional compact connected manifold and thus
diffeomorph to a closed interval. Then y is the one boundary point of V. Let z be
the other, which as well lays on 0B;(0). It follows that z = f(z) in contradiction
toy,z € f~1(y). O

Theorem C.16 (Brouwer’s fixed point theorem). Let f : By(0) — B1(0) be con-
tinuous. Then f has one fized point, that is, there exists x € B1(0) with f(z) = x.

Proof. If f(x) # x for all x € B1(0), we define g(x) to be the intersection of a line
with S?~1 beginning in f(z) through x . As constructed g is a retraction of By (0)
on S"1.

O
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APPENDIX D. MAXIMUM PRINCIPLES

Theorem D.1 (Strong elliptic maximum principle). Let M be closed and f: M —
R satisfy

—“ApfHUVMF4cef <0
for some smooth funtions b* and ¢ < 0. If f <0, but f #0, then f <0.

Proof. For a proof see [Eva02, §6.4, Theorem 4] or [Sch17b, Theorem 5.5] for M™ =
R™. ([l

Let M™ be a smooth n-dimensional manifold with boundary whose closure is
compact. Let X : M™ x [0,T) — R™™™ be a family of smooth embeddings and set
M; := X(M",t). For f € C%Y(M™ x [0,T)), we define the parabolic operator

L(f) =0 f —a" ViV f —b'Vif —cf,
where a;;,b;, ¢ € L™ may depend on p, t, (gri)wi, f, V.f, and V2 f, and where (a*);;
is positive semi-definite, that is,
NE? < aii&ily < AJ¢P?
forall¢ € R™. For R > 0, po € M™ and tg € [0,T), define the spatial neighbourhood
Ur(po, to) == X " (Br(X (po, to)) N My,)
={pe M"||X(p,to) — X(po,to)| < R},
the parabolic neighbourhood
Qr(po.to) == {(p,t) € M"™ x (to — R*,to] | 1 X (p,t) — X (po,t)| < R}
= U (Urlpo.t) x{t})
te(to—R2,to]
and, for an open set U C M™ and [t1,%9] C [0,T), the parabolic boundary
P(U X [t1,t0]) := (U x {t1}) U (OU X (ty,t0]) -
Theorem D.2 (Weak parabolic maximum principle). Let U C M™ be open and let
feCE(Q)NCYUPQ) for Q:=U X [t1,to]. Let L(f) <0 on Q

(i) If ¢ =0, then supg f < suppg f-
(i) If ¢ <0 in {(z,t) € Q: f(x,t) > 0}, then supg f < suppg max{f,0}.
(ii) If c € L and suppg f < 0, then supg f < 0.

Theorem D.3 (Strong parabolic maximum principle). Let U C M™ be open and
connected, Q := U x [0,T), and f € CFL(Q)NC°(Q). Let L(f) <0 in Q and there
exists (po,to) € Q@ \ PQ with f(po,to) = maxg f. If

(i) ¢=0 or

(i) ¢ <0 and f(po,to) >0 or

(iii) ¢ arbitrary and f(po,to) =0,
then then f is constant in U x [0, o).

D.1. 2-tensors. We follow the lines of [CCG108, Chapter 12]. Let 7' > 0 and
(M™,g(t))tefo,r) a closed manifold with a family of metrics, that depend smoothly
on time. Let m = (m;;)i<i j<n be symmetric with m;; € C°(M™ x [0,T)). Let
b = (bij(m,p,t))1<ij<n be symmetric with b;; € C1(M™ x [0,T)) and satisfy the
null eigenvector condition, that is, if m;;&7 =0 for 1 <4 < n then also b;;£'¢7 > 0.
Let u® € L®(M"™ x [0,T)), 1 <k < n.

Theorem D.4 (Weak parabolic maximum principle for 2-tensors). Let
Demag = Dgymig + w1 mis + by (mia, )
in M™ x (0,T) and m;;(-,0) = 0. Then m;;(-,t) =0 for 0 <t <T.
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Proof. See e.g. [Sch17c, Theorem 4.2] a

Theorem D.5 (Strong parabolic maximum principle for 2-tensors I, Hamilton
[Ham86, Lemma 8.2]). Let b be locally Lipschitz in m. Let

dmi; = Agymis + Ve e + bij(mya, )
in M™ x (0,T), m;(-,0) = 0 for all t € [0,T) and m;;(po,0) > 0 for pg € M™.
Then myj(-,t) =0 for0 <t <T.

Proof. We follow the lines of [CCGT08, Theorem 12.47]. Let p € M™ and U C M™
so that p,pp € U and so that U is a compact manifold with smooth boundary.
Define ¢7 : U x [0,T) — R by

01 <M\(0) inU
w1 =0 ondU
2¢1(po) = A1(po,0).
Let C' > 0 to be chosen later and let f: U x [0,T) — R a solution of
Of =Dy f +u"VIDF—CF  inU % (0,T)
f=0 onodUx|[0,T)
fG,0)=¢1 inU.

Since m;(po,0) > 0, we also have ¢1(pg) > 0. The strong maximum principle
for functions, Theorem D.3, yields that f > 0 in U x (0,7"). The weak maximum
principle, Theorem D.2, yields

f(z,t) < max i (z) < max Ai(z,0)
peU peU

in U x (0,T). Define the tensor
’I’hij = Myj + (EGCt — f)@j s
where € > 0. Then
mij = M6y + (2e“" — A1)di; = 0
and
&mﬁij = atmij + (EC@Ct — 8tf) (Sij
= Ag(t) (mij - féz]) + UkVZ(t) (mij — f(SU)
+ bij (mkl) + C (EGCt + f) 5ij
= Ag(t)mij + ukvz(t)ﬁzij + bij (ﬁlkl)
— (bij (Mgr) — bij(m)) + C (eeC* + f) bi; -
Since b;; is Lipschitz in m;,
bij (Mkt) — bij (i) < Lip(bgt) (i — mij) = Lip(bgi) (ee“" + £)di; .
By choosing C' > Lip(b;;) and ¢ such that e < e~“*, we obtain
Dty = Dgiayiniy + P VL g + by ()
+ (C — Lip(bij)) (EBCt + f) 0ij
i Ag(t)’l'hij + U/kVi(t)ThZ] + b” (mkl) .
The weak maximum principle, Theorem D.4, implies m;; = 0 on U x [0,T) for

e € (0,e=*]. Thus m;; = (—ee®t + f)8;; on U x [0,T) for e € (0,e~“*]. Letting
e—0 yields My 5 > f57] > 0 on U x [O,T) O
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Theorem D.6 (Strong parabolic maximum principle for 2-tensors II). Let

or(p,t) == inf (m(r, 1)+ +m(7e, k)

(71,07} orthonormal
=M(p,t)+ -+ X(p,t)
where k € {1,...,n}. Let b be locally Lipschitz in m. Let
Ormij = Agymij + ukVi(t)mij + bij (M, -)
in M™ x (0,T), ¢r(-,0) > 0 in M™ and ¢x(po,0) > 0 for k € {1,...,n} and
po € M"™. Then ¢p(-,t) >0 for0 <t <T.

Proof. We follow the lines of [CCG*08, Theorem 12.49]. Let p € M™ and U C M"
so that p,pp € U and so that U is a compact manifold with smooth boundary.
Define ¢y : U x [0,T) — R by
ko < ¢(-,0) inU
pr =0 onoU
ki (po) = Ai(po,0).
Let C > 0 to be chosen later and let f: U x [0,7) — R a solution of
Of = Dy f +uVIDF—Cf inU % (0,T)
f=0 ondUx|[0,T)
f(,0)=¢r inU.

Since ¢ (po,0) > 0, we also have ¢ (pg) > 0. The strong maximum principle for
functions, Theorem D.3, yields that f > 0 in U x (0,7). The weak maximum
principle, Theorem D.2, yields

f(xat) < mal((pk(x) < maggbk(z,O)
peU peU

in U x (0,T). Define the tensor
’ﬁlij = My + (€€Ct — f)éw s

for e > 0 and

or(p, t) = inf (m(r, 1)+ +m(7%, 7))

Tl Tk } orthonormal
= ¢k($,t) + k(eeCt - f(:C,t)) .
We want to show that ér > 0on U x [0,T) for £ > 0 small enough. Assume the
opposite. Since ¢ > 01in U x {0} and U x [0,T), there exists a point (p1,t1) €
U x [0,T) with
br(p1t1) =0 and dr(p.t) >0 for all (p,t) € U x [0,t).

Let 79,...7) € T,,, M™ be orthonormal with

(Y, T + (T, TR) =0

in (p1,t1). Extend each 79 in space and time to a lokal vectorfield 7; by parallel
translation of ¥ along geodesics starting from p; with respect to V9 (t1) and constant
in time. Then

V1i(p1,t1) =0, At;(p1,t1) =0, O7i(p1,t1) =0.
Define in a neighbourhood of (p1,t1)
Yr(pst) = m(p, t)(11,71) + -+ (p, ) (T, T)
where ¥k (p1,t1) =0 and
Yi(p,t) > Gr(p,t) = 0
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for all p € U and ¢ € [0,1]. At (p1,t1), we have
0> (9 — A —u' V)i
k

(0 — A = u!Vyym(ry, )

Il
-

?

k
b7) (70, 70) = 3 (b(aw) = b(m)) (79, 70) + C (e + )

=1

k
> | kC — ZLip(b)(T‘;,T?)) (ee“"+ f) >0
=0

I
E

«
Il
-

if we choose C' > Lip(bij) and ¢ such that ¢ < e~ ©*. This is a contradiction. Hence,
ér > 0on U x [0,T) for ¢ < e~ Thus ¢ > —k(ce®* — f) on U x [0,7T) for
£ € (0,e~“*]. Letting ¢ — 0 yields ¢y > f > 0on U x [0,7). O

Theorem D.7 (Strong parabolic maximum principle for 2-tensors III, Hamil-
ton [Ham86, Section 8]). Let b be locally Lipschitz in m. Let

Oy = Dgymiy + VL mi; + b (mig, )
in M™ x (0,T) and m;;(-,0) = 0 for allt € [0,T). Then
(i) If ta > t1 in [0,T), then
inf rankm(p,ts) > sup rankm(p,t;)
peEM™ peEM™
and there exists § > 0 so that rankm(p,t) is constant for all p € M™ and
t € (0,0).

(ii) (kerm is smooth in space and time). Let (0,0) be the time interval from (i).
Then, ker m(t) C TM™ is a smooth subspace which depends smoothly on time
fort e (0,9).

(i1i) (kerm is parallel in space and time). Let (0,0) be the time interval from (i).

Then, ker m(t) is invariant under parallel transport in space and constant in
time fort € (0,0).

Proof. See [CCG108, Theorem 12.50]. O

We also need the following two variants of the previous theorems. A vectorfield
v = v'0; is called time-parallel provided

o' = _ng (atgjk)vk.
Since 9 (gijvivj) = 0, the length of v is constant in time.

Theorem D.8 (Stong maximum principle for 2-tensors IV, White [Whi03, Propo-
sitions A.2 and A.3]). Let Q C R™ be open and connected. Let m;; be a smooth
time-dependent symmetric 2-tensorfield such that

Ot(mijvivj) > (Amij)vivj

for all time-parallel vectorfields v. Let A be the smallest eigenvalue of m. If the
minimum value of X on Q X (a,b] occurs at (p,b), then X is constant on Q x (a,b).
Furthermore, at each time t € (a,b], Q is locally isometric to a product Ny x Ny
of two Riemannian manifolds N1 and No, where v 1. TNy if and only if v is an
eigenvector of m with eigenvalue A. Moreover, let v € TNy, w € TNy and V € TS},
then Vyv € TNy and Vyw € TNs.
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Proof. Given a spacetime point = (p,t), let v = v, be a unit vector such that
m(v,v) = A. Extend v to a unit vectorfield v(-,t) at time ¢ by parallel translation
along geodesics starting from p. This way of extending v guarantees that

(Am)(v,v) = A(m(v,v)) (D.1)

at (p,t). Now extend v as a time-parallel vectorfield on € x (a,b]. Then v is a unit
vectorfield so

A <m(v,v), (D.2)

with equality at (p,t). Suppose for the moment that A is a smooth function on
x (a,b]. Then by (D.1) and (D.2),

OtA = 0c(m(v,v)) > (Am)(v,v) = A(m(v,v)) > AX (D.3)
at the point (p,t). Thus if A is smooth, then
AW\ > AN (D.4)

Even if A is not smooth, the derivation just given shows that (D.4) holds in a
viscosity sense. (In the nonsmooth case, one should think of 9;\ as

lim inf A@,t) = Azt = h) .
h—0 h>0 h

Then by (D.2), we will still have d;A > 9:(m(v,v)) at (p,t).) The strict maximum
principle, Theorem D.3, then implies that A is constant. Now consider the point
(p,t) and the special vectorfield v defined above. Since A is constant, the first and
last terms in (D.3) vanish. This forces all the terms to vanish, in particular

(Am)(v,v)(p,t) = 0.

(The argument for nonsmooth A goes as follows. The maximum principle for smooth
A is proved using smooth functions f such that 9, f < Af and then observing that it
is impossible for A— f to attain a minimum (on certain domains). In the nonsmooth
case, note that if A— f attained a minimum at a spacetime point x, then for v = v,,
the function f := m(v,v) — f would also have a minimum at the spacetime point z,
which readily gives a contradiction since f is a smooth function with d;f > Af.)

For the last claim, without loss of generality, we may assume that A\ = 0; other-
wise replace m by m — Ag. Fix a time ¢. It suffices to prove the conclusion on an
open dense subset of ). Since the nullity (dimension of the nullspace) of m is locally
constant on a dense open subset of (), we may assume it is constant throughout 2.
Now fix some point (p,t). Let {e;} be a g-orthonormal basis at (p,t), and extend
(spatially) by parallel translation along geodesics emanating from p; this guarantees
that AT = V., (V,,T) for any tensor field 7. Now m(v,-) =0, so

0 = A(m(v,v)) = Ve, (Ve,(m(v,v))))

=V, ((Ve,m)(v,v) +2m(Ve,v,v))

= (Am)(v,v) + 2(Ve,m)(Ve,v,0)

=2V, (m(Ve,v,v)) = 2m(Ve, v, Ve,v) = =2m(Ve,v, Ve, 0) .
Since m is positive semidefinite, this means V., v is in the nullspace of m at (p,t)
for each 7. Thus for any vector V, the vector Vywv is in the nullspace at (p,t).
Since (p,t) is arbitrary, in fact this holds everywhere. In other words, if v is a null
vectorfield and V' is an arbitrary vectorfield, then Vv is also a null vectorfield.

By the Frobenius theorem, Theorem B.2, the nullspaces of m form an integrable
distribution. (Note that the leaves of the foliation are totally geodesic.) Now
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suppose V is an arbitrary vectorfield, v is a nullvectorfield, and that w is a vectorfield
everywhere perpendicular to the nullvectors. Then

0=Vy(w,v) = (Vyw,v) + (w, Vyv) = (Vyw,v).

Thus (again by Frobenius) the orthogonal complements of the nullspaces of m form
an integrable distribution, and the leaves are totally geodesic. Thus we can find a
coordinate system {p*} such that

g= ((gm‘)lgi,jgm 0 ) .
0 (9ap)m+1<a,6<n

Since g;o = 0, the Christoffel symbol simplify to

1
I = =59 0395

Since the horizontal leaves are totally geodesic, I';; vanishes for all o, which implies
that Jggi; = 0, so g;; does not depend on pP. Notice this holds for all i, j and S.
Likewise gnp does not depend on any of the p’. Thus g is a product metric. O
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