Übungen zur Vorlesung Graphischer Mittlerer Kümmungsfluss

Blatt 4

Aufgabe 11. (4 Punkte)

Sei $X_0(\mathbb{S}^2)=M_0\subset\mathbb{R}^3$ eine Hyperfläche mit H>0. Löse $X:\mathbb{S}^2\times[0,T)\to\mathbb{R}^3$ den inversen mittleren Kümmungsfluss

$$\frac{\partial X}{\partial t} = \frac{1}{H} \nu$$

mit Anfangswert X_0 .

Berechne die Evolutionsgleichung von g_{ij} , h_{ij} , $\frac{1}{H}$ und $\det(g_{ij})$.

Aufgabe 12. (4 Punkte)

Sei $X_0(\mathbb{S}^2) = M_0 \subset \mathbb{R}^3$ eine sternförmige Hyperfläche mit H > 0. Löse $X : \mathbb{S}^2 \times [0,T) \to \mathbb{R}^3$ den inversen mittleren Kümmungsfluss $\frac{\partial X}{\partial t} = \frac{1}{H}\nu$ mit Anfangswert X_0 . Sei $M_t := X(\mathbb{S}^2,t)$. Dann besagt ein nicht ganz einfach zu zeigenes Resultat, dass $e^{-t/n}M_t$ glatt zu einer Sphäre mit einem Radius $R(M_0) > 0$ konvergiert.

Zeige, dass

$$E(M) := \frac{1}{|M|} \left(\int_{M} H \, d\mu \right)^{2} \ge 16\pi$$

für sternförmige Hyperflächen Mmit H>0 gilt.

Hinweis: Berechne zunächst $\frac{\partial}{\partial t}E(M_t)$ unter dem inversen mittleren Kümmungsfluss. Glatte Konvergenz liefert hier insbesondere, dass $E(e^{-t/n}M_t) \to E(\mathbb{S}_R^2)$ gilt.

Aufgabe 13. (4 Punkte)

Let $X: \mathbb{S}^1 \times [0,T) \to \mathbb{R}^2$ eine Lösung des Curve Shortening Flows $\frac{\partial}{\partial t}X = -\kappa\nu$. Sei $S \in \{\mathbb{S}, \mathbb{R}\}$ und $T_{\infty} \in \{0,\infty\}$.

Zeige

(i) Es existiert eine Folge von Reskalierungen

$$(X_k:I_k\times J_k\to\mathbb{R}^2)_{k\in\mathbb{N}}$$

welche für $k\to\infty$ gleichmäßig und glatt auf kompakten Teilmengen $I\times J\subset S\times (-\infty,T_\infty)$ (mit $0\in I$) im Definitionsbereich und im umgebenen Raum zu einer maximalen, glatten Lösung $X_\infty:S\times (-\infty,T_\infty)\to \mathbb{R}^2$ konvergiert, die wieder den Curve Shortening Flow erfüllt.

(ii) Für eine Typ-I-Reskalierung um eine Typ-I-Singularität gilt $T_{\infty}=0$ und es existiert eine Zeit $\tau_{\infty}\in\left[-\frac{C_0^2}{4},-\frac{1}{4}\right]$ so dass

$$X_{\infty}(0,\tau_{\infty}) \in B_{3C_0}(0)\,, \quad |\kappa_{\infty}(0,\tau_{\infty})| = 1 \quad \text{ und } \quad \sup_{S \times (-\infty, -\delta^2]} |\kappa_{\infty}| \leq \frac{C_0}{\delta}$$

für alle $\delta < 0$.

(iii) Für eine Typ-II-Reskalierung um eine Typ-II-Singularität gilt $T_{\infty}=\infty$ und

$$X_{\infty}(0,0) = 0$$
 und $\sup_{\mathbb{R} \times \mathbb{R}} |\kappa_{\infty}| = |\kappa_{\infty}(0,0)| = 1$.

Hinweis: Benutze folgendes Resultat: Falls $|\kappa| \leq C_0$ auf $\mathbb{S}^1 \times [0, \bar{T}]$, dann existiert für alle $n, m \in \mathbb{N} \cup \{0\}$ eine Konstante $C_{n,m} = C_{n,m}(C_0, X_0)$ sodass

$$\left| \frac{\partial^n}{\partial t^n} \frac{\partial^m \kappa}{\partial s^m} \right| \le C_{n,m}$$

auf $\mathbb{S}^1 \times [0, \bar{T}]$.

Aufgabe 14. (4 Punkte)

Sei $S \in \{\mathbb{S}^1, \mathbb{R}\}$ und $X : S \times (0, T) \to \mathbb{R}^2$ eine Lösung des Curve Shortening Flow $\frac{\partial}{\partial t}X = -\kappa \nu$. Sei $X_{\infty} : S \times (-\infty, T_{\infty}) \to \mathbb{R}^2$ eine Limeslösung nach einer Reskalierung um eine Singularität, wie in Aufgabe 13.

Zeige mit Hilfe von Theoremen 2 und 3:

(i) Es gilt

$$\frac{d}{dt} \int_{\Sigma_t} |\kappa| \, ds_t = -2 \sum_{\{\kappa(s,t)=0\}} \left| \frac{\partial \kappa}{\partial s}(s,t) \right| \, .$$

(ii) Seien $\tau_1, \tau_2 \in (-\infty, T_\infty)$ mit $\tau_1 < \tau_2$. Dann gilt

$$\int_{\tau_1}^{\tau_2} \sum_{\{\kappa_{\infty}(s,\tau)=0\}} \left| \frac{\partial \kappa_{\infty}}{\partial s}(s,\tau) \right| d\tau = 0.$$

(iii) Es gilt $\kappa_{\infty} \neq 0$ auf $S \times (-\infty, T_{\infty})$. Somit ist die Limeslösung X_{∞} entweder strikt konkav oder strikt konvex

Theorem 2 (Fatous Lemma). Sei $(\Omega, \sigma, d\mu)$ ein messbarer Raum und sei $(f_i : \Omega \to [0, \infty))_{i \in \mathbb{N}}$ eine Folge integrierbarer Funktionen mit $f \geq 0$ sodass $\liminf_{i \to \infty} \int_{\Omega} f_i d\mu < \infty$ gilt. Dann gilt auch

$$\int_{\Omega} \liminf_{i \to \infty} f_i \, d\mu \le \liminf_{i \to \infty} \int_{\Omega} f_i \, d\mu.$$

Theorem 3 (Nullstellen der Krümmung). Sei $S \in \{\mathbb{S}^1, \mathbb{R}\}$ und $X : S \times (0,T) \to \mathbb{R}^2$ eine eingebettette Lösung des Curve Shortening Flow mit $\kappa \not\equiv 0$. Sei $t_0 \in (0,T)$. Dann gilt für alle $t \in (0,t_0)$, dass die Menge

$$z(t) = \{ p \in S \mid \kappa(p, t) = 0 \}$$

endlich ist falls $S = \mathbb{S}$ und abzählbar falls $S = \mathbb{R}$. Falls an einem Punkt $(p_1, t_1) \in S \times (0, t_0)$ gilt, dass $\kappa(p_1, t_1) = 0$ und $\frac{\partial}{\partial s} \kappa(p_1, t_1) = 0$, dann folgt:

- (i) Falls $S = \mathbb{S}^1$, dann ist #z(t) streng monoton fallend für $t \in (t_1, t_0)$.
- (ii) Falls $S = \mathbb{R}$, dann existivet eine Umgebung $U = [p_1 \varepsilon, p_1 + \varepsilon] \times [t_1 \delta, t_1 + \delta]$ so dass
 - $u(p_1 \pm \varepsilon, t) \neq 0$ für $|t t_1| \leq \delta$
 - $u(\cdot, t + \delta)$ hat höchstens eine Nullstelle in dem Intervall $[p_1 \varepsilon, p_1 + \varepsilon]$
 - $u(\cdot, t \delta)$ hat mindestens zwei Nullstellen auf dem Intervall $[p_1 \varepsilon, p_1 + \varepsilon]$.

Abgabe: Bis Donnerstag, 14.06.2018, 10.00 Uhr, in die Mappe vor Büro F 402.